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List of Symbols

The below given list describes several symbols that will be later used within the body

of the document :

Number sets and logic notations

N Natural Numbers

R is not a member of

A Closure of set A

D There exists at least one

@ For all

ñ Implies

z Set Difference

X Set Intersection

Y Set Union

H Empty Set

P is member of

C Complex numbers

Q Rational Numbers

1
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R Real numbers

Z Integers

Ă is a proper subset of

Ď is a subset of

Other symbols

inf Infimum or Minimum

lim Limit

lim inf Limit Inferior

lim sup Limit Superior

sup Supremum or Maximum

8 Infinity

Relation Operators

‰ Not equal to

ă less than

“ equal to

ą greater than

ě greater than or equal to

ď less than or equal to



Preface

The project entitled “Exploring Chaos and its Related Properties in Topo-

logical Dynamical Systems” comprises five chapters. At the beginning of each

chapter we give a brief outline of the research work carried out in that chapter. The

report is organized as follows: Chapter 1 is the introductory chapter of the section.

It discusses the significance and motivation of each topic in brief. In Chapter 2,

we discuss the Transitivity and Density of Periodic Points. In Chapter 3, we study

Sensitivity and its Stronger Forms. We also discuss various interesting examples that

further our understanding of sensitivity in the context of Chaos. In Chapter 4, we

discuss Chaos Theory and the various types of Chaos. In Chapter 5, we discuss the

Product of Dynamical Systems and the various theorems associated with them.



Chapter 1

Introduction

“A butterfly’s wings might create tiny changes in the atmosphere and ultimately

become the decisive factor that causes a tornado”

Edward Norton Lorenz

The name “Chaos” (Greek , translit. Cháos) is presumably derived from the Greek

verbs (cháskō) and (cháınō), both meaning “gape, be wide open,” and both

themselves related to the Proto-Indo-European 1gheh2n, “gape.” [7]

The earliest reference to the idea of Chaos in Western Culture is found in Hesiod’s

Theogony, where it is described simply as the first entity that came into existence. [8]

The earliest reference to the idea of Chaos in Indian Culture is found in Vedic

Literature, which recounts the multiple attempts of Prajāpati to create the universe.

In one such attempt, he creates a universe that is too fragmented or

chaotic(prthāk).When entities in the universe are too individualist, separated, or

different from each other — prthāk, they cannot connect hence chaotic. [9]

4
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Earliest known mathematical evidence of Chaos Theory is through the works of

18th-century French Mathematician Pierre-Simon Laplace. He demonstrated that

the totality of celestial body motions (at his time, the sun and the planets) could be

explained by the laws of Newton, reducing the study of planets to a series of

differential equations. But there was a catch. His calculations depended on the

capacity to know the initial conditions of the system, an unusual challenge for

mathematicians of that time who were used to determinism. The phenomenon of

sensitivity to initial conditions was discovered by Poincaré in his study of the n-body

problem [10].

Edward Lorenz, from the Massachusetts Institute of Technology (MIT), USA is the

official discoverer of Chaos Theory [11]. He first observed the phenomenon in the

early 1960s. while making calculations with uncontrolled approximations aiming at

predicting the weather by making the same calculation rounding with 3- 3-digit

rather than 6-digit numbers which did not provide the same solutions.

It is well known that in nonlinear systems, multiplications during iterative processes

amplify differences in an exponential manner. It is in this experiment, that we also

observe the modern-day ideas concerning Sensitivity taking shape as well. In the

1970s, French-American mathematician Benoit Mandelbrot discovered Fractals and

Mandelbrot Sets [12].

Chaos refers to the complex and unpredictable behavior of some dynamical systems.

Although these systems are deterministic, even a small change in the initial

conditions can lead to a large change in the behavior of the system over time. The

first topological definition of chaos was introduced by Li and Yorke. R. L. Devaney’s

mathematical definition identifies three components of a chaotic map: transitivity,

sensitivity to initial conditions, and density of periodic points [1].
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1.1 Transitivity and Density of Periodic Points

Auslander and Yorke first associated transitivity with the definition of chaos. A

transitive function f is one in which any two open sets can be connected by a chain

of iterates of the function. This is necessary because if there are such sets that

cannot be connected, then some regions will be inaccessible from other parts of the

system, and therefore the system will be predictable in those regions. Thus, the

system is indecomposable, i.e., it cannot be broken down into subsystems that do not

interact under f .

Then, the chaotic system has elements of unpredictability as well as regularity, i.e.,

sensitivity and density of periodic points respectively. Sensitivity means that the

orbits of arbitrarily close points diverge. The density of periodic points means that

every open set has points that are predictable. Devaney incorporated this idea into

the definition of chaos, which along with transitivity implies chaos on infinite sets as

proved by Banks et al.

Even the density of periodic points on intervals is redundant. Also, the existence of a

dense orbit is a stronger condition that implies transitivity (if the space has no

isolated points). For some special spaces, the converse is also true. Finally, in a

special way chaos exists on unit interval given the density of points with period three

and higher.

We define a few terms that we will be using in this section and briefly introduce their

contents.
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Definitions

Note: For easier understanding to the reader examples have also been given with

each definition.

Let X be a Topological Space and f be a continuous mapping defined on X , then:

Definition 1.1.1 (Semiflow). Let Y be a metric space and T be an abelian

topological monoid action, then a semiflow ; denoted by pY, T q is a left monoid action

on Y.

Essentially, a semiflow denotes the action of time, T on a metric space, Y.

If ϕ : T ˆ Y Ñ Y is a mapping , then for all t P T and y P Y ; we have ϕpt, yq=t ¨ y

Definition 1.1.2 (Cascade). A cascade refers to a semiflow where a discrete

topological action is applied on Y. This is applied mostly through a mapping

f : Y Ñ Y where for n P N; n ¨ y=fnpyq or f iterated n times. A cascade of this form

is denoted by pY, fq

Now, before defining chaos, we need to define its characteristics:

Definition 1.1.3 (Topological Transitivity). A cascade pY, fq is said to be

topologically transitive if for any open,nonempty subsets U, V Ă Y , there exists an

n P N such that fnpUq X V ‰ H

Thus, transitivity implies that for any two subsets, we can find a finite number of

iterations so that the sets intersect.

Definition 1.1.4 (Devaney’s Chaos). we let f : X Ñ X be a continuous

transformation of a metric space X .

Devaney called it to be chaotic if it satisfies the following three conditions:

(i)ă X, f ą is topologically transitive.
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(ii) The set of periodic points of ă X, f ą are are dense in X.

(iii) f is sensitive . [14]

We talk more about Devaney chaos in the following sections.

Example 1.1.1. A tent map, where X “ r0, 1s with standard topology and usual

metric and fpxq “ mint2x, 2p1 ´ xqu, is topologically transitive.

Example 1.1.2. The logistic map, where X “ r0, 1s with standard topology and

usual metric and fpxq “ µxpp1 ´ xq where µ P p0, 4q, is not topologically transitive.

Periodic Points

Definition 1.1.5 (Periodic Points). Let pY, fq be a cascade. A point y P Y is said to

be periodic if Dn P N s.t. n ¨ x “ x The set of periodic points of Y is denoted by

PerpY q

Example 1.1.3. In a tent map x “ 2{3 is a periodic point.

Definition 1.1.6 (Preperiodic point). A point x in a continuous self-map f is

preperiodic if D m,n P N such fmpxq “ fm`npxq.

The orbit of a preperiodic point contains a periodic point.

Example 1.1.4. X “ r0, 1s and fpxq “ 2mintx, 1 ´ xu. Then orbit of 1{3 has

fp1{3q “ 2{3, where 2{3 is a fixed point.

Definition 1.1.7 (Recurrent point). [2] A point x P X under f is recurrent if for

any neighbourhood N of x and any m P N, Dn ą m such that fnpxq P N .



9

A point is recurrent if it is an accumulation point of its orbit. Thus all periodic

points are recurrent points.

Definition 1.1.8 (Almost periodic point). [2] A point x P X under f is almost

periodic if for any neighbourhood N of x Dm P N such that

tfn`i : i ď mu X N ‰ ϕ, @n P N.

Implications of transitivity

Sometime after R. L. Devaney incorporated the idea of a dense set of periodic points

in the definition of chaos, [25] proved the redundancy of sensitivity.

If continuous f : X Ñ X is transitive and has dense periodic points then f has

sensitive dependence on initial conditions.

[45] made a surprising discovery for continuous maps on intervals.

Let I be a (not necessarily finite) interval and let f : I Ñ I be a continuous and

topologically transitive map. Then periodic points of f are dense in I and f is

sensitive as well. There was a general misunderstanding of the relation between

transitivity and the existence of a dense orbit. [3] stated conditions under which the

two are equivalent.

Let a complete metric space X with a countable base such that there is no dense

subset of a non-empty open subset U and the function f : X Ñ X is continuous.

Then f is topologically transitive if and only if it has a dense orbit. The

relationship between the dynamic of individual movement and the dynamic of
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collective movement was discussed by [40]. In essence, collective chaos implies

individual chaos but not conversely.

If f : X Ñ X is a continuous function, then if f̄ : KpXq Ñ KpXq is transitive then f

is also transitive, where KpXq is the class of all non-empty and compact subsets of

X and f̄ is the natural extension of f to Kpxq.

Stronger Forms of Transitivity and Invariance [5]

Definition 1.1.9. If A is subset of X then A is called +invariant if fpAq Ă A,

´invariant if f´1pAq Ă A and invariant if fpAq “ A.

Definition 1.1.10. Let X be a metric space and U and V be a pair of open and

non-empty subsets of X. The system pX, fq is exact if, for every U and V , there

exists a n P N such that fnpUq X fnpV q ‰ H.

The system pX, fq is fully exact if for every U and V there exist a n P N such that

pfnpUq X fnpV qq0 ‰ H.

Definition 1.1.11. pX, fq is called

1. Topologically Transitive if
Ť8

n“1 f
npUq is dense in X for any U in X.

2. Strongly transitive if for every open and non-empty set U which is a subset of X

and
Ť8

n“1 f
npUq “ X.

3. Very Strongly Transitive if for every open and non-empty subset U of X, there

exists a k P N such that
Ťk

n“1 f
npUq “ X.

4. Minimal if there is no proper, nonempty, closed invariant subset of X.
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5. Weak Mixing if X ˚ X or f ˚ f is topologically transitive.

6. Exact Transitive if for every open and non-empty subset pair U and V of X,
Ť8

n“1 f
npUq X fnpV q is dense in X.

7. Strongly Exact Transitive if for every open and non-empty subset pair U and V

of X,
Ť8

n“1 f
npUq X fnpV q “ X.

8. Strongly Product Transitive if for every natural number n the product system

pXn, fnq is strongly transitive.

9. Mixing or Topologically Mixing if, for every pair of open and non-empty subset

U and V of X, there exists a k P N such that fnpUq X V ‰ H for every n ě k.

10. Locally Eventually Onto if for every open and non-empty subset U of X, there

exists a n P N such that fkpUq “ X @ k ě n.

Example 1.1.5. Let X “ tx P N X t0u|x ď mu Ă R, where m is any natural

number. We define f as fpiq “ i ` 1, i ă m and fpmq “ 0. Then f is locally

eventually onto as fkptiuq “ X @ k ě m @i P X. Also, this means every orbit is

dense, and hence f is minimal. Thus f is transitive.

Example 1.1.6. [38] Tent map f “ mintx, 1 ´ xu on X “ r0, 1s is locally eventually

onto. Let U be any non-empty open set. Let D be the set of all rationals in X with

an odd numerator and denominator a power of 2 in reduced form. Then D is dense.

Let x “
p
2m P DXU , where p is odd and m ě 2. Then fm´2pxq is 1{4 or 3{4, we let it

be the former. Then any open interval containing 1{4, by continuity will eventually

map the whole space.

For open sets U and V , Dk, l such that kth and lth iterates of U and V are X

respectively. Then f is strongly exact transitive as f rpUq X f rpV q “ X, where
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r “ maxpk, lq.

Example 1.1.7. Let x0 P X be a periodic point of f , and Y be the orbit of x0. Let

g be the restriction of f with respect to Y . Then g is minimal. Every point maps to

every other point before coming back to itself after the number of iterates equal to

the prime period of x0.

Example 1.1.8. Let X “ r0, 1q and fpxq “ x ` α mod1, where α is an irrational in

X. Then f is minimal. For this, we first show that 0 has a dense orbit. The orbit of

0 is infinite.

Let X be represented by the union of disjoint (except possibly at endpoints) intervals

of equal width 1{M . Let fmp0q and fnp0q, n ă m, be in one of such intervals. Then

the iterate gm´n sends any point an arbitrarily small distance away, so the orbit of

zero is dense. Now for any x P X, gmpxq “ gmp0q ` x, @m P N, so x has dense orbit.

1.2 Sensitivity and its Stronger Forms

Chaos Theory is a Mathematical Theory that helps in the study of deterministic

non-linear dynamical system [6] .

It is observed that in Chaos Theory, various dynamical systems can be differentiated

based on their sensitivity. Sensitivity refers to the dependency of a dynamical system

on its initial conditions. These initial conditions are varied. We can compare these

variations and consequently differentiate the dynamical systems based on their

sensitivity.

The most popular and mathematically rigorous definition of sensitivty was given by



13

the American Mathematician John Guckenheimer in the late 1970s [13]. Robert L.

Devaney used this definition to emphasize the importance of sensitivity in a chaotic

system in Devaney’s Chaos. [14]. The study of Sensitivity as a distinct area of

research did not take place until the 2000s.Akin and Kolyada discovered Li-Yorke

Sensitivity in 2003 [15]. Chinese Mathematician Xiong Jincheng discovered

n-sensitivity in 2005 [15]. Indian Mathematician T K Subrahmonian Moothathu

codified existing definitions of sensitivity and proposed stronger forms of sensitivity

including multi-sensitivity in 2007 [17]

Definitions

Note: For easier understanding to the reader examples have also been given with

each definition.

Definition 1.2.2. For A Ă N, we say that A is cofinite if N z A is finite.

Definition 1.2.3. A is thick if A contains arbitrarily large blocks of consecutive

numbers.

Definition 1.2.4. : A is syndetic if Nz A is not thick

Definition 1.2.5. A is piece-wise syndetic if it is an intersection of a syndetic set

with a thick set.

Definition 1.2.6 (P-system). It refers to the dynamical system, which is

topologically transitive as well as has a dense set of periodic points.

Definition 1.2.7. When given TDS pA, gq we can say that, the given TDS is:

1. syndetically sensitive if NpY, ϵq is syndetic for some ϵ ą 0 and every nonempty

open set Y Ă A.

2. thickly sensitive if NpY, ϵq is thick for some and ϵ ą 0 for every nonempty open

set Y Ă A.
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3. thickly syndetically sensitive if NpY, ϵq is thickly syndetic for some ϵ ą 0 and

every nonempty open set Y Ă A.

4. thickly periodically sensitive if NpY, ϵq is thickly periodic for some ϵ ą 0 and

every nonempty open set Y Ă A.

5. cofinitely sensitive if NpY, ϵq is cofinite for some ϵ ą 0 and every nonempty open

set Y Ă A.

1.3 Chaos in Dynamical Systems

Mathematics studies several sets. Some of these sets, often known as systems, change

with time. Such systems are known as dynamical systems. As given in [36], we deal

with systems whose physical properties change with time t. We often specify the

state at time t using variables:

y1, y2, ¨ ¨ ¨ , yn

and their derivatives:

dy1
dt
,
dy2
dt
, ¨ ¨ ¨ ,

dyn
dt

As given in [37], dynamical systems have been in popular literature since the 19th

century. Essentially, dynamical systems study the evolution of systems over time. A

particular state of a dynamical system is referred to as the orbit. Dynamical systems

are of 2 types: discrete and continuous.

A discrete dynamical system consists of a non-empty set X and a mapping

f : X Ñ X. We iterate this a finite number of times, n P N because it is discrete.

This system is also called cascade. Here f 0 denotes the identity map.

A continuous-time dynamical system, unlike a cascade, does not change with time

intervals, it consists of a space X and a one-parameter family of maps f t : X Ñ X

for t P R that forms a one-parameter group or semi-group. This is called a flow if
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t P R and a semiflow if t P R`
0 .

A dynamical system is said to be deterministic when the system described by it

follows a specific map completely determinable by its present state. An important

feature of dynamical systems is chaos. This refers to the property of dynamical

systems to exhibit dramatically different long-term behaviors due to a small change

in initial conditions.

An important characteristic of long-term behaviors of dynamical systems is ’chaos’.

According to [50], Derived from a Greek word , meaning ’a state without order’.

This word relates to dismantled or unordered systems, contrary to the word cosmos,

an ordered state. A more formal definition of chaos is ’an irregular oscillation or

variation governed by a relatively simple rule’. Consider a simple map f : r0, 1s Ñ R

given by fpxq “ 4xp1 ´ xq (the logistic map). Even with such a simple rule, as we

will see further, the map appears to be irregular and uneven and hence, chaotic. If

we take a particular xn P r0, 1s, and with successive iterations, we can observe chaotic

or irregular behavior. For instance, consider the following Mathematica maps:
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(a) First Iteraton

(b) Second Iteraton (c) Third Iteraton

Figure 1.1: The Logistic Map

The variation is increasing with each iteration, this is precisely, what we mean by

chaos. Several definitions have arisen in the study of chaos. Devaney [40], gave one

of the most prominent definitions of chaos. He based it on 3 conditions, firstly,

topological transitivity or the ability of 2 sets to coincide with time and iterations,

secondly, sensitivity or the extent of increase in distance between 2 elements on

successive iterations, and Periodic points’ denseness which depicted the coverage of

periodic points and their orbits in each subset. We talk more about this in further

sections. There are other definitions of chaos which we examine in the below sections.

Preliminaries

To study chaos,we need to study some terms first. The definitions have been inspired

from [38]
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Definition 1.3.1 (Pointwise Sensitive). Let N pyq denote the set of all

neighborhoods of y P Y . Let Y be a metric space with metric d. A cascade pY, fq is

called pointwise sensitive if Dc ą 0 , such that @y P Y , @M P N pxq, Dn P N, x P M

satisfying dpfnpyq, fnpxqq ě c So, pointwise sensitivity says that for any point in the

metric space, we can find a point in the neighborhood whose distance keeps on

increasing more than a sensitivity level (c) after n iterations.

Definition 1.3.2 (Setwise Sensitivity). A metric space Y is said to be setwise

sensitive if Dc ą 0 such that for any open nonempty U Ď Y , there exist x, y P U and

n P N satisfying dpfnpxq, fnpyqq ě c According to this criterion, a matrix space Y is

said to be setwise sensitive if, for any 2 points in it, the distance increases for a

defined sensitivity level. So, both pointwise and setwise sensitive are equivalent.

Definition 1.3.3 (Dense Set). Let Y be a metric space and A Ď Y , then the set

A “
č

tM |M is closed in Y and A Ă Mu

is called the closure of A. A subset A is called dense in Y if

A “ Y

We can also say that for any x P X, and any ϵ ą 0, there is a point a P A such that

dpa, xq ă ϵ.

Definition 1.3.4 (Lyapunov Exponent [43]). Let f : R Ñ R be a continuous

differentiable map. Then @x P R, we define the local Lyapunov exponent of x, say,

λpxq as:

λpxq “ lim
nÑ8

1

n

n´1
ÿ

i“0

log |f 1
pxiq|

Definition 1.3.5 (Compact Metric Space [47]). A metric space X is said to be

compact if every sequence in X has a convergent subsequence. A subset M of X is
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said to be compact if M is compact and considered as a subspace of X, that is, every

subsequence in M has a convergent subsequence whose limit is an element of M .

Definition 1.3.6 (Isolated Point [38]). Let X be a topological space. A point x P X

is called isolated if txu is an open set.

Definition 1.3.7 (Topologically Weakly Mixing [48]). Let X be a metric space and

f be a map, then product map f : X Ñ X is said to be topologically weakly mixing

if f ˆ f is topologically transitive.

Definition 1.3.8 (Topologically Mixing [48]). Let X be a metric space and

f : X Ñ X be a map. Now, define NfpU, V q “ tn P Z` : fnpUq X V ‰ Hu Now, f is

said to be topologically mixing if for any two nonempty open sets

U, V Ă X,NfpU, V q is a syndetic set. In other words,there is an integer M ą 0, such

that NfpU, V q X n, n ` 1, . . . , n ` M ‰ H

Definition 1.3.9 (Touhey Property [48]). Given a metric space X and a

not-necessarily continuous semi-flow ψ : R` ˆX Ñ X, we say that ψ has the Touhey

property on X if, given U and V , nonempty subsets of X, there exists a periodic

point x P U and a real number t ě 0 such that ψpt, xq P V .

Definition 1.3.10 (Sequence Space). The sequence space on two symbols is the set

Σ “ tpa0a1a2a3 . . .q|ak “ 0 or 1u

Thus, the space Σ is the set of all infinite sequences that can be made with 0 or 1.

These are called words, or infinite words in 2 letters, 0 and 1.

The distance function between 2 elements a “ pa0a1a2 . . .q and b “ pb0b1b2 . . .q of Σ is

defined as:

dra, bs “
ÿ

kě0

ak ´ bk
2k

2 important results on sequence space are:



19

1. If ak “ bk for k “ 0, 1, . . . , n then dra, bs ď 1{2n

2. If dra, bs ă 1{2n then sk “ tk for k “ 0, 1, . . . , n.

The 2 properties are also called the Proximity Theorem.

Definition 1.3.11 (Shift map). The shift map σ : Σ Ñ Σ is defined by:

σpa0a1a2 . . .q “ pa1a2a2 . . .q

Thus, the kth iteration is given by:

σkpa0a1a2 . . .q “ pakak`1ak`2 . . .q

Thus, the shift map denotes a dynamical system on the sequence space.

Observe that the periodic points of this system with period n are of the form

pa0a2a2 . . . an´1a0a1 . . . an´1 . . .q “ pa0a1 . . . an´1q

given that these can be 0 or 1, there can be 2n points with period n and some of

these will have prime period less than n. Thus, we can find eventually fixed and

eventually periodic points in this system.

Definition 1.3.12 (Totally Transitive [49]). A map f on a metric space X is said to

be totally transitive if fn is transitive for all n P N. x P X is called a fixed point of f

if fpxq “ x.

Definition 1.3.13 (Ball [47]). Given a point x0 (center) in a metric X, and a real

number r ą 0 (radius), we can define 3 types of sets:

• Open Ball: Bpx0; rq “ tx P X|dpx, x0q ă ru

• Closed Ball: Bpx0; rq “ tx P X|dpx, x0q ď ru

• Sphere: Spx0; rq “ tx P X|dpx, x0q “ ru
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Definition 1.3.14 (Gδ Subset). A subset of a topological space is said to be a Gδ

subset if it is a countable intersection of open sets.

Definition 1.3.15 (Different relations between points [49]). Let pX, fq be a

dynamical system with metric d. For 2 points x and y in X, they are called

asymptotic (AR) if lim dpfnpxq, fnpyqq “ 0. x and y are called proximal (PR) if

lim inf dpfnpxq, fnpyqq “ 0. If they are not proximal, then the relation is called distal

(DR). For any relation R on X ˆ X, denote Rpxq “ ty : px, yq P Ru for any x P X .

Let ∆pnq “ tpx, yq : dpx, yq ă 1{nu and ∆ “ tpx, xq : x P Xu. Let

Ak,n “ X8
i“kpf ˆ fq´i∆n. Note that each Ak,n is closed, PR is a Gδ subset and AR is

an equivalence relation on X.

Definition 1.3.16 (ω-Limit Sets [51]). The ω-Limit Set of a cascade f for a point

x P X is given by :

ωpx, fq “

8
č

n“0

tfkpxq : k ě nu

Definition 1.3.17 (Topologically Conjugate [38]). Two function f : A Ñ B and

g : C Ñ D are said to be topologically conjugate if there is a homomorphism

h : B Ñ C such that hrfpaqs “ grhpbqqs for all a P A, b P B.

An important property of topological conjugates is that they preserve topological

properties like transitivity and denseness of periodic points. We will prove this result

for transitivity, provided h is surjective.

Consider f, g be 2 maps on X and h be a surjective homomorphism as defined above.

Now, let A,B Ă X be arbitrary nonempty open subsets. Since h is surjective,

h´1pAq and h1pBq are nonempty. And since f is topologically transitive, there exists

an n P N such that fnph´1pAq X h´1pBqq ‰ H. Let x P h´1pAq such that

fnpxq P h´1pBq. Hence, there is some y P A such that hpxq “ y and

gnpyq “ gnphpxqq “ hpfnpxqq. Since fnpxq P h´1pBq, it follows that

gnpyqhpfnpxqq P B. Thus, it implies that g is also transitive.
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Definition 1.3.18 (Unstable Points). Let X be a compact metric space with metric

d. Let f : X Ñ X be a continuous map.A point x P X is said to unstable if there

exists an r ą 0 such that for every ϵ ą 0 there are y P X and n ě 1 satisfying

dpx, yq ă ϵ and dpfnpxq, fnpyqq ą r.



Chapter 2

Transitivity and Density of Periodic Points

To understand the depth of concepts in a better way, it is crucial to comprehensively

go through the crispness of topology, metric spaces, transitivity, periodic points,

preperiodic points, recurrent points, invariance, etc in order to step up to what are

known as stronger forms of transitivity. Various results allied to topological

transitivity and density of periodic points include implications of transitivity (viz,

sensitivity is redundant on infinite sets, transitivity implies chaos on interval,

existence on dense orbits if and only if conditions of transitivity), transitivity in

set-valued discrete system, lemmas and theorems on stronger forms of transitivity,

period 3 or higher implies chaos. (After demonstrating that chaos implies a set of

points being dense.)

2.1 Conditions for Transitivity and Existence of Dense Orbit

Topological transitivity and existence of dense orbit are two distinct concepts, and it

is worth exploring when one implies the other. In general, they are not equivalent,

but there are exceptions. We show that on a complete metric space with a countable

base, the two concepts are equivalent.

The dynamics of the system can be studied by observing the trajectories of

individual points in the system, which we can then use to infer the collective

22
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behavior of the system. However, this approach is limited in that it does not take

into account the relationship between the individual elements. When we want to see

the movement of sets rather than just of points, we study set-valued discrete

systems. We are concerned about the relationship between the dynamics of

individual movement and the dynamics of collective movement. We here see that

transitivity of natural extension of f to class of all non-empty and compact subsets

of X implies transitivity of f . In essence, collective chaos implies individual chaos

but not conversely.

We first show some examples where neither Transitivity nor Existence of Dense

Orbit implies the other.( [3] [1])

Example 2.1.1. [57] Let X “ ta, bu with discrete topology and let f : X Ñ X be

the constant map to a. Then the orbit of b is dense in X. But fkptauq X tbu is

nonempty for no k.

Example 2.1.2. On X “ t0u Y t1{n : n P Nu and f : X Ñ X be defined by fp0q “ 0

and fp1{nq “ 1{pn ` 1q. Then 1 has a dense orbit. But f is not topologically

transitive because for example, U “ t1{2u and V “ t1u, then p
Ť8

n“1 Uq X V “ ϕ.

Example 2.1.3. Let I “ r0, 1s and g : I Ñ I be a continuous map defined by

gpxq “ 1 ´ |2x´ 1|. Let X be the set of periodic points of g. Let f be restriction of g

on X, i.e., f “ g|X . Then f has no dense orbit since X is infinite as it is dense in I

but any periodic point has a finite orbit.

However, it is topologically transitive. For any non-degenerate sub-interval J of I,

there is a positive k such that fkpJq “ I. Hence, whenever J1 and J2 are nonempty

open sub-intervals of I, there is a periodic orbit of g which intersects both J1 and J2.

Proposition 1. Let X be the topological space that lacks a dense finite subset in any
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non-empty open subset U . A (not necessarily continuous) function f : X Ñ X is

topologically transitive if it meets this criterion and has a dense orbit.

Proof. Let x have a dense orbit in X and let open, non-empty set U, V Ă X. Now we

know that fmpxq P U and fnpxq P V (as x is dense in X).

First, we assume that, m ă n and let k “ n ´ m. So, it is obvious that

fkpUq X V ‰ H.

Now let us assume that m ě n. As m ą n, the orbit of x will enter set V many times

before entering set U . Let’s say these points are

f p1pxq, f p2pxq, ...., f pkpxq

(n ď pi ď m, i “ 1, 2, ..., k). As these points are not dense in V there exists an open,

non-empty subset V 1 of V such that none of these points exist in V 1. As x is dense in

X and V 1 Ă V Ă X, there exists a l ą 0 such that f lpxq X V 1 ‰ H. l is greater than

m, so for some q “ l ´ m we get f qpUq X V ‰ H

Hence, X is topologically transitive

Proposition 2. Let a complete metric space X with a countable base and a

continuous function f : X Ñ X. Then f possesses a dense orbit if and only if f is

topologically transitive.

Proof. Let pViqi be a countable base for X (here, i P I). Wi “
Ť

ně0 f
´npViq is open

by continuity of f for i P I. Wi is also dense in X.

Now to check this let there be a set U which is a non-empty open set. As f is

topologically transitive there exits a k ą 0 such that fkpUq X V ‰ H. This implies

that f´k X U ‰ H and Wi X U ‰ H Thus Wi is dense.

Let B “
Ş

iPI Wi be dense in X by Baire category theorem. Now the orbit of any

x P B is also dense in X. Because, for any subset U in X, there exists i P I such that
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Vi Ă U and k ą 0 such that x P f´kpViq. This implies that fkpxq P Vi Ă U . Thus the

orbit of x enters some arbitrary U .

Now, combining the above propositions

Proposition 3. Let a complete metric space X with a countable base such that there

is no dense subset of a non-empty open subset U and the function f : X Ñ X is

continuous. Then f is topologically transitive if and only if it has a dense orbit.

Transitivity in Set-Valued Discrete System [4]

Lemma 1. Let A be a non-empty open subset of X. Let U P KpXq, where KpXq is

the class of all non-empty and compact subsets of X, and U Ă A then there exist

ϵ ą 0 such that, ϵ´dilatation of U as a set, NpU, ϵq “ tx P X{pdpx, Uq ă ϵu Ă A.

Proof. Let bpAq be the boundary of A.We can assume that bpAq is non-empty (since,

bpAq “ H ùñ A “ X and here the result is obvious).

So, the map h : U Ñ R, where hpuq “ dpu, bpAqq, is a continuous function. h will

assume its minimum value at U .

Let u0 P U such that δ “ hpu0q “ minuPUhpuq, Assuming δ “ 0 we get u0 P bpAq

(since A is open and b(A) is close) which is a contradiction and hence δ ą 0. Taking

0 ă ϵ ă δ we get NpU, ϵq Ă A.

Lemma 2. Let A be a non-empty open subset of X. Then the extension of

A,epAq “ tU P KpXq{U Ă A, is a non-empty open subset of KpXq.

Proof. If U P epAq then U Ă A. From 1 we know that there exists ϵ ą 0 such that

NpU, ϵq Ă A. If F P BpU, ϵq and HpU, F q “ maxtρpU, F q, ρpF,Uqu, where

ρpU, F q “ inftϵ ą 0{U Ď NpF, ϵqu and ρpF,Uq “ inftϵ ą 0{F Ď NpU, ϵqu then

HpU, F q ă ϵ ùñ F Ă NpU, ϵq Ă A which further implies F P epAq.
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Lemma 3. If A is subset of X, then

1. epA X Bq “ epAq X epBq

2. f̄pepAqq Ď epfpAqq

3. f̄ p “ f̄ p for every p P N.

Proof. 1. U P epA X Bq ðñ U Ă A X B ðñ U P epAq X epBq

2. If U P f̄pepAqq then there exists a U1 P epAq such that

U “ f̄pU1q “ tfpxq{x P U1u. Since, U1 Ă A, we get U Ă fpAq ùñ U P epfpAq.

3. Obvious.

Theorem 2.1.1. If f : X Ñ X is a continuous function, then if f̄ : KpXq Ñ KpXq

is transitive then f is also transitive.

Proof. Let P and Q be two non-empty open subsets of X. By 2, we know that epP q

and epQq are non-empty open sets in KpXq. So, by transitivity if f̄ , we have

f̄npepP qq X epQq “ f̄npepP qq X epQq ‰ H, for some n P N.

By 3, we can say, epfnpP qq X epQq “ epfnpP q X Q ‰ H. Since

epAq “ H ðñ A “ H, we get fnpP q X pQq ‰ H which implies f is transitive.

2.2 Stronger Forms of Transitivity

Many different forms and definitions of stronger form of transitivity are prevalent in

literature. Here we strive to give unifying definitions for these concepts while

studying their relations. For instance, on an open map, very strongly transitivity is

equivalent to strongly transitivity while both imply transitivity. Similarly, if the

space is minimal, then it is very strongly transitive. On a closed set with no isolated

points, these different forms coincide.
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Lemma 4. If pAnq is a sequence of subsets of X then

(a) For every ϵ there exist k P N such that
Ťk

n“1An is ϵ dense if and only if
Ť8

n“1An

is dense.

(b) For all open An and
Ť8

n“1An “ X there exist a k P N such that
Ťk

n“1An “ X.

Proof. (a) Because X is compact it has a finite cover by ϵ{2 balls. A set that meets

each of these is ϵ dense.

(b) This follows from compactness.

Theorem 2.2.1. (a) If pX, fq is an exact system and f is one-to-one then X is a

singleton, i.e. the system is trivial.

(b) pX, fq is fully exact if and only if for every pair of U and V which are open and

non-empty subsets of X,
Ť

npfnpUq X fnpV qq0 ‰ H

Proof. (a) Let X is not a singleton which means it has a pair of open and non-empty

sets U and V which are disjoint. Since, pX, fq is exact we have fnpUq X fnpV q ‰ H

for some n P N which implies that f is not one-to-one which is a contradiction.

Hence, X is a singleton.

(b) Since pX, fq is fully exact we have,
Ť

npfnpUq X fnpV qq0 Ă p
Ť

n f
npUq X fnpV qq0

which implies that the latter is non-empty.

Let P P U and Q P V be closed and non-empty sets. Let an open set

A “ p
Ť

n f
npUq X fnpV qq0.Since it is non-empty it is Baire space with a countable,

relatively closed over tA X fnpP q X fnpQq : n P Nu. So, fnpP q X fnpQq has a

non-empty interior in A and so in X (by Baire Category Theorem). In fact,
Ť

npfnpP q X fnpQqq0 is dense in A. It implies that pX, fq is fully exact.

Theorem 2.2.2. Let pX, fq be a dynamical system. The following are equivalent.

1. The system is topologically transitive.
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2. There exists a n P N such that f´npUq X V ‰ H, for some U and V open and

non-empty subset of X.

3. For every pair of open and non-empty subsets U and V of X the set NpU, V q

(where it is a time-hitting set, i.e.

NpU, V q “ tn P N : fnpUq X V ‰ Hu “ tn P N : U X f´npV q ‰ Hu) is

non-empty.

4. For every pair of open and non-empty subsets U and V of X the set NpU, V q is

infinite.

5. For some x P X the orbit, Opxq is dense in X, i.e. the set of transitive points,

Transpfq, is non-empty.

6. Transpfq “ tx : wpxq “ Xu is dense Gδ subset of X.

7.
Ť8

n“1 f
npUq is dense in X for any U in X.

8. For every open and non-empty subset U of X and ϵ ą 0 there exist a k P N such

that
Ťk

n“1 f
npUq is ϵ dense in X.

9.
Ť8

n“1 f
´npUq is dense in X for any U in X.

10. For every open and non-empty subset U of X and ϵ ą 0 there exist a k P N such

that
Ťk

n“1 f
´npUq is ϵ dense in X.

11. Let U be an open and non-empty subset of X and if U is -invariant then U is

dense in X.

12. If A is a closed subset of X and +invariant, then either A “ X or A is nowhere

dense in X.

If the system pX, fq is topologically transitive, then f is surjective, i.e. onto, and X

is either a single periodic orbit or perfect space, i.e. has no isolated points.
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Proof. We can see that condition (7) is the definition of Topological Transitivity, so

p1q ðñ p7q.

p7q ùñ fpXq is dense and by compactness equals X, i.e. f if surjective.

Now, let us assume that for x P X orbit Opxq is dense. Now, if x P Opxq then x is a

periodic point with finite orbit Opxq dense in X and equals wpxq which means X is a

periodic point. If x R Opxq then it implies that Opxq is dense but not closed and is

infinite which means that all the points of the orbit are distinct. We get for some

y P X{Opxq, it is the limit point of some sequence fnipxq where ni P N and ni Ñ 8.

In particular, there is such a sequence with fnipxq Ñ x and so fni`kpxq Ñ fkpxq

@ k P N. Thus no point of X is isolated and every point is contained in wpxq.

Each of p2q, p7q, p9q ðñ p3q is any easy exercise. Since
Ť8

n“1 f
´npUq is -invariant

and equals U if U is invariant, and hence p9q ðñ p11q. By Lemma 4 (a).

p7q ðñ p8q and p9q ðñ p10q. p11q ðñ p12q by taking compliments.

p4q ùñ p5q and p4q ùñ p3q are obvious.

It’s clear that Transpfq “
Ş

U

Ť8

n“1 f
´npUq, with you varying over countable base.

By assumption (9) each
Ť8

n“1 f
´npUq is a dense open set. By Baire Category

Theorem, Transpfq is a dense Gδ set. By initial argument,

Transpfq “ tx : wpxq “ Xu. This gives p9q ùñ p6q.

p5q ùñ p4q: (4) is obvious if X is a periodic orbit. Otherwise, (5) and our initial

argument implies that X is perfect. If Opxq is dense then it meets every open and

non-empty set in an infinite set because X is perfect. It then follows that NpU, V q is

infinite for every open and non-empty pair of U and V .

Corollary 0.1. For a system pX, fq, the set of transitive points, i.e. Transpfq is

invariant and -invariant.

Every transitive point is recurrent.
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Proof. By (6) in Theorem 2.2.2 Transpfq “ tx : wpxq “ Xu and wpxq “ wpfpxqq as

wpxq is invariant. It implies that Transpfq is invariant and -invariant. Now,

x P wpxq implies every transitive point is recurrent.

Theorem 2.2.3. Let (X,f) be a dynamical system, then the following are equivalent.

1. The system (X,f) is strongly transitive.

2. For every open and non-empty subset U of X and for every x P X, there exists a

n P N such that x belongs to fnpUq.

3. For every open and non-empty subset U of X and for every x P X, the set

N(U,V) is non-empty.

4. For every open and non-empty subset U of X and for every x P X, the set

N(U,V) is infinite.

5. The negative orbit O´pxq is dense in X @ x P X.

6. For all x P X and ϵ ą 0 there exist a n P N such that O´
n pxq is ϵ dense in X.

7. If A is a non-empty subset of X and -invariant, then A is dense in X.

(X,f) strongly transitive implies f is topologically transitive.

Proof. We can easily find that p1q, p3q and p5q ðñ p2q and p5q ðñ p6q by Lemma

4.

p4q ùñ p3q obvious.

p5q ùñ p4q : If n P NpU, xq then there exists a y P U with fnpyq “ x. Because O´pyq

is dense there exists k P NpU, yq. That is, there exists z P U such that fkpzq “ y and

so fk`npzq “ x. Hence, k ` n P NpU, xq. Thus, the set NpU, xq is unbounded.

p5q ùñ p7q : O´pxq is -invariant and if x P A and A is -invariant then O´pxq Ă A.
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Condition p3q ùñ condition (3) of theorem 0.1 and hence Strongly Transitive

implies Topological Transitive.

Theorem 2.2.4. Let (X,f) be a dynamical system, and the following are equivalent

for a dynamical system.

1. The system is strongly transitive.

2. For every ϵ ą 0, there exists a k P N such that O´
k pxq is ϵ dense in X for every

x P X.

If (X,f) is very strongly transitive then for every open and non-empty subset U of X

and every point x P X the set N(U,x) is syndetic.

Proof. p1q ùñ p2q: Cover X by ϵ{2 balls V1, ..., Vm. There exist an k P N large

enough that
Ťk

n“1 f
npViq “ X, for i “ 1, ...,m. Fixing x P X, we get a y P Vi for

some i and some y P X and x P fnpViq for some n such that 1 ď n ď k. Therefore,

O´
k pxq is ϵ dense in X.

p2q ùñ p1q: For some k P N there exists a ϵ ą 0 such that O´
k pxq is ϵ dense in X for

every x P X. Let W be ϵ dense in X. For x P X there exists a x1 P W such that

fnpx1q “ x where 1 ď n ď k. Hence x P
Ťn

n“1 f
npW q. Since x is arbitrary

Ťk
n“1 f

npW q “ X.

If X “
Ťk

n“1 f
npUq then for every m P N, X “ fmpXq “

Ťk`m
n“1 fpUq. Thus for every

x P X the set NpU, xq meets every interval of length k in N.

Corollary 0.2. Let pX, fq be a dynamical system. If pX, fq is strongly transitive,

then the set NpU, V q is syndetic for any open and non-empty subset U and V of X.

Proof. If x P V , then NpU, xq Ă NpU, V q.
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Theorem 2.2.5. For an open map f the following conditions are equivalent.

1. The system is very strongly transitive.

2. The system is strongly transitive.

3. X does not contain a proper, closed and -invariant subset.

Proof. p1q ùñ p2q ùñ p3q whether the map is open or not.

p2q ùñ p1q: U , open and non-empty implies fnpUq is open and if tfnpUq : n P Nu

covers X then it has finite subcover.

p3q ùñ p2q: If A is a non-empty and invariant subset of X then , Ā is a non-empty

and closed -invariant subset of X and so it equals X. Thus, A is dense by Theorem

2.2.3 (6).

Theorem 2.2.6. If pX, fq is a dynamical system, then the following are equivalent.

1. The system is weakly mixing.

2. For a triple of open and non-empty subsets U, V,W Ă X, there exists n P N

such that f´npUq X W ‰ H and f´n X W ‰ H.

3. For a triple of open and non-empty subsets U, V,W Ă X, there exists n P N

such that fnpUq X W ‰ H and fn X W ‰ H.

4. @n P N the product system pXn, fnq is topologically transitive.

5. For every open and non-empty set U Ă X, and ϵ ą 0, there exists n P N such

that f´npUq is ϵ dense in X.

6. For every open and non-empty set U Ă X, and ϵ ą 0, f´n is ϵ dense in X for

infinitely many n P N.



33

7. For every open and non-empty set U Ă X, and ϵ ą 0, there exists n P N such

that fnpUq is ϵ dense in X.

8. For every open and non-empty set U Ă X, and ϵ ą 0, fn is ϵ dense in X for

infinitely many n P N.

Proof. (2) and (3) are the characterization of weakly mixing, so p1q ðñ p2qandp3q.

p1q ðñ p4q is a consequence of Furstenberg Intersection Lemma.

p5q ùñ p2q and p7q ùñ p3q Choosing ϵ ą 0 small enough that ϵ ball is contained in

both V and W .

p6q ùñ p5q and p8q ùñ p7q Obvious

p4q ùñ p6q and p8q Let V1, ..., Vm be finite cover of X by ϵ{2 balls. Since the

product system pXm, fmq is topologically transitive, there exists infinitely many

n1, n2 such that n1 P NpU, V1q X ¨ ¨ ¨ X NpU, Vmq and n2 P NpV1, Uq X ... X NpVm, Uq.

This implies that fn1pUq and f´n2pUq are ϵ dense.

Theorem 2.2.7. Let a dynamical system pX, fq

(a) If the system pX, fq is exact transitive then it is weak mixing.

(b) The following are equivalent

(1) The system pX, fq is strongly exact transitive.

(2) For all pairs of open sets U and V ,
Ť

nPNpf ˚ fqnpU ˚ V q contains the diagonal

idX .

(3) For all x P X, the negative pf ˚ fq orbit O´px, xq is dense in X ˚ X.

If (X,f) is strongly exactly transitive, then it is exactly transitive and strongly

transitive.

Proof. (a) It clearly holds from condition (12) of Theorem 2.2.6.
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(b) All three conditions imply that for every x P X and for every open and

non-empty subset U and V of X, there exists n P N such that x P fnpUq and

x P fnpV q.

Theorem 2.2.8. (a) If pX, fq is exact transitive and fully exact then it is exact

transitive

(b) If the system pX, fq is topologically transitive and fully exact then the system is

exact transitive.

(c) If pX, fq is strongly exact transitive then it is fully exact as well.

Proof. (a): Obvious

(b): Let the system pX, fq is topologically transitive and fully exact. For an open

and non-empty pair of set U and V , there exists a transitive point x in the open and

non-empty set p
Ť

n f
npUq X fnpV qq0. So there exists a n P N such that

x P fnpUq X fnpV q. The orbit Opxq is then contained in
Ť

kě0 f
kpUq X fkpV q and the

latter set is dense.

(c) This follows from Theorem 2.2.1 (b).

Theorem 2.2.9. Let a dynamical system pX, fq. The following are equivalent for

the dynamical system.

1. The system pX, fq is topologically mixing.

2. For every open and non-empty pair of subset U and V of X, the set NpU, V q is

co-finite.

3. For every pair of open and non-empty subset U of X and ϵ ą 0, there exists a

k P N such that f´npUq is ϵ dense in X @ n ě k.
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4. For every pair of open and non-empty subset U of X and ϵ ą 0, there exists a

k P N such that fnpUq is ϵ dense in X @ n ě k.

If the system pX.fq is topologically mixing then it is weak mixing.

Proof. p1q ðñ p2q and p3q, p4q ùñ p2q are obvious.

p2q ùñ p3q and p4q: Let V1, ..., Vm be finite cover of X by ϵ{2 balls. As

NpU, V1q, ..., NpU, Vmq and NpV1, Uq, ..., NpVm, Uq are co-finite, there intersection

NpU, V1q X ¨ ¨ ¨ X NpU, Vmq and NpV1, Uq X ¨ ¨ ¨ X NpVm, Uq are also finite.

Theorem 2.2.10. If pX, fq is a dynamical system then the following are equivalent.

1. The system pX, fq is locally eventually onto.

2. For all ϵ ą 0, there exists a n P N such that f´npxq is ϵ dense in X for every

x P X.

3. For all ϵ ą 0, there exists a k P N such that f´npxq is ϵ dense in X for every

n ě k.

If the system pX, fq is locally eventually onto then it is strongly product transitive

and topologically mixing.

Proof. We know that if fkpUq “ X then fnpUq “ U @ n ě k.

p1q ùñ p3q: Let tU1, ..., Umu be a cover by ϵ{2 balls. There exists a k P N such that

for all n ě k, fnpUiq “ X for every i “ 1, ..,m. Then f´npxq meets each Ui @ x P X

and n ě k. So all such f´npxq are ϵ dense.

p3q ùñ p2q: Obvious

p2q ùñ p1q It is given that U is open and non-empty. Now let ϵ ą 0 such that U

contains an ϵ ball. If f´npxq is ϵ dense @ x then f´kpxq meets U for every x. Thus,

fkpUq “ X.
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2.3 Period 3 and Higher Implies Chaos

If f is chaotic on a compact metric space with no isolated points, then the set of

points with period less than n is nowhere dense, i.e., set of points with period at least

n is dense for each n. Conversely, if f is a continuous function from a closed interval

to itself, for which the set of points with period at least n is dense for each n, then

there is a decomposition of the interval into closed subintervals on which either f or

f 2 is chaotic. Finally, absence of proper invariant non-degenerate sub-interval on f

and f 2 along with set of points with period at least 3 being dense, assure chaos on f .

We first show that chaos implies that a set of points with a prime period at least n is

dense. [54]

Theorem 2.3.1. Let X be a compact metric space without isolated points and f be

a chaotic map. Then Pn, the set of points with prime period at least n is dense.

Proof. Assuming otherwise, let U “ P̄n
C
. Then all open sets in U have periodic

points with periods strictly less than n. Let z have dense orbit and z1 “ fkpzq P U .

We define zi “ fk`i´1pzq, i ď n. Let ϵ be the minimum distance between any two zi,

then we define open Bi “ Bpzi, ϵ{2q which are mutually disjoint. Let

Vn “ Bn; Vi “ Bi X f´1pVi`1q, i ă n. Then Vi contains zi, is open and fpViq Ď Vi`1.

Now, z1 P V1 X U so it is non-empty and contains a periodic point with a period

strictly less than n, say y. But y P V1, so f
ipyq P Vi`1, so y has a period at least n,

which is a contradiction.

The density of Pn doesn’t imply chaos.

Example 2.3.1. Let D be the closed unit disk in the complex plane. Define

f : D ÝÑ D by fpreiθq “ reipθ`2πrq. Then every rational r is periodic with a period at

most the denominator of r. Then Pn is dense for all n as a set of rationals with
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denominator at least n is dense. dpfnp0q, fnpzqq “ |z| @n so D is not sensitive to

initial condition. Also D is not transitive as fnpBp1{2, 1{8qq X Bp3{4, 1{8q “ ϕ @n.

Lemma 5. Let continuous f : r0, 1s ÝÑ r0, 1s have a dense set of periodic points.

Suppose that 0 ď a ă b ď c ă d ď 1 and that f permutes the intervals ra, bs and rc, ds.

Then fpbq “ c, fpcq “ b, and f fixes rb, cs. Moreover, 0 ă a if and only if d ă 1, in

which case fpaq “ d, fpdq “ a, and f permutes the intervals r0, as and rd, 1s.

Proof. If x P pra, bs Y rc, dsqC , and fpxq P ra, bs Y rc, ds then x is not periodic as

ra, bs Y rc, ds is invariant. If a point of pb, cq is mapped outside the interval, then as

endpoints of this interval are mapped into ra, bs Y rc, ds, and f is continuous, so some

sub interval of rb, cs would be mapped into ra, bs Y rc, ds. This sub-interval then

cannot contain a periodic point which is contrary to the hypothesis. Hence rb, cs is

invariant. Also, fpbq P rc, ds X rb, cs “ c. Hence, fpbq “ c and similarly fpcq “ b.

Lemma 6. Let continuous f : r0, 1s ÝÑ r0, 1s have a dense set of periodic points. If f

has no proper invariant non degenerate sub interval ra, bs, then either:

1. 0 “ a ă b ă 1, pbq “ b and rb, 1s is also invariant; or

2. 0 ă a ă b “ 1, fpaq “ a and r0, as is also invariant; or

3. 0 ă a ă b ă 1, fpaq “ a, fpbq “ b and the intervals r0, as and rb, 1s are also

invariant under f ; or

4. 0 ă a ă b ă 1, fpaq “ b, fpbq “ a and f permutes the intervals r0, as and rb, 1s,

which are also invariant underf 2.

Proof. Let 0 ă a ă b ă 1 and a ă fpaq ă b. Then by continuity, pa ´ ϵ, aq maps to

pa, bq for some ϵ ą 0 which would then contain no periodic point, which is a

contradiction. Hence a maps to a or b. A similar conclusion follows for b. Let

fpaq “ a. Then r0, as is invariant otherwise some of its sub-interval will map into

ra, bs. If fpbq “ a, then some sub interval of rb, 1s maps into rb, 1sC which is invariant.
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Hence fpbq “ b and rb, 1s is invariant. If fpaq “ b, then r0, as maps to rb, 1s otherwise,

again some of its sub-interval will map into ra, bs. Similarly, rb, 1s can map either to

rb, 1s or r0, as. Former is impossible as r0, as maps its periodic points to rb, 1s.

Proof of other cases is similar.

Lemma 7. Let continuous f : r0, 1s ÝÑ r0, 1s have a dense set of periodic points. If f

has no proper invariant non-degenerate sub-interval, then either:

1. f is transitive; or

2. f permutes two sub intervals r0, as and ra, 1s for some 0 ă a ă 1.

Proof. Let f have no invariant sub-interval and it is not transitive. Let U, V be open

intervals such that fnpUq X V “ ϕ @n. Let U 1 “ Yiďnf
ipUq. Then, U 1 X V “ ϕ. U 1

can be represented as a union of disjoint intervals.

Let J be a sub-interval of U 1. Then J “ YiPAf
ipUq, where A is some subset of

natural numbers. fpJq “ YiPAf
i`1pUq Ď U 1. Also for some periodic point in J of

order say, k, fkpJq Ď J since fkpJq is a sub interval of U 1. Thus Ū 1 can be

represented as finite union of closed intervals Ii “ rri, sis, si ď ri`1, 1 ď i ď n that

are permuted by f . Also, Ū 1 cannot be an interval due to non-existence of invariant

sub-intervals. Let k be the least number for which fpIkq “ Ij, j ă k. Also let

fpIk´1q “ Im. We will show that Ik and Ik´1 permute. Then n “ 2 i.e., rr1, s1s and

rr2, s2s are the only intervals. Hence r0, s1s and rr2, 1s permute by a previous lemma

and rs1, r2s is degenerate. For this, we consider three cases: (a) j “ k ´ 1 and k “ m;

(b) j ď k ´ 1 and m ą k; (c) j ă k ´ 1 and m ě k. In the third case, fpsk´1q ě rk

and fprkq ď rk´1. This means some sub interval of rsk´1, rks maps to Ik´1,

contradicting density of periodic points. The second case is impossible similarly.

Lemma 8. If Pnpfq “ tx : x has prime period at least n with respect to fu, then
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Pnkpfq Ď Pnpfkq. Also, if P3pfq is dense, then both f and f 2 have dense set of

periodic points.

Proof. Let x P Pnkpfq with period m. Then f pkqmpxq “ x ùñ x P Pnpfkq as m ą n.

Thus Pnkpfq Ď Pnpfkq.

P3pfq “ P4pfq Y tx : x has period 3 with respect to fu

Ă P2pf
2q Y tx : x has period 3 with respect to fu

Ă P2pf
2q,

because any element of period 3 in f has period 3 in f 2 as well.

Theorem 2.3.2 (Period 3 and higher implies chaos). Let P3 be dense with respect

to a continuous map f : r0, 1s ÝÑ r0, 1s. Then one of the following is true:

1. There is a finite or countably infinite collection I of non-degenerate closed

intervals of r0, 1s such that:

(a) union of all intervals in I,
Ť

IPI I is dense in r0, 1s;

(b) intervals in I meet only at the endpoints;

(c) each interval in I is invariant with fixed endpoints, except when endpoint

are 0 or 1;

(d) f is chaotic on each interval in I.

2. There is a finite or countably infinite collection I of non-degenerate closed

intervals of r0, 1s and a central interval A, which might be degenerate such that:

(a) f 2 and J satisfy all conditions in (1) above, where J is I if A is degenerate

and J=I Y A otherwise;

(b) f fixes A and acts as an order-reversing permutation of the intervals in I,

transposing them in pairs about A.
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Proof. Since P3pfq is dense, both f and f 2 have a dense subset of periodic points

that are not fixed, and therefore set of fixed points is nowhere dense.

Let f have a proper non-degenerate invariant sub-interval [a,b]. Then by one of the

previous lemma, we have four cases:

• r0, bs and rb, 1s are invariant and non-degenerate;

• r0, as and ra, 1s are invariant and non-degenerate;

• ra, bs, r0, as and rb, 1s are invariant and non-degenerate;

• ra, bs is invariant and r0, as and rb, 1s permute, neither of which are degenerate.

In the first three cases, at least one of the points a and b is not equal to 0 or 1 and is

fixed, f does not permute any sub intervals of r0, 1s in pairs. For example, in the

third case, if rc, ds and re, f s permute with d ă e, c ‰ 0 and f ‰ 1, then r0, cs and

rf, 1s permute. This would mean that some sub interval r0, as maps outside r0, as.

Let J be the set of endpoints of all proper non-degenerate invariant closed

sub-intervals. Then all elements of J , except possibly 0 or 1 are fixed, and hence J is

nowhere dense. Thus we can construct a collection of proper non-degenerate

invariant closed sub-intervals I with the property that no element contains a proper

invariant non-degenerate sub-interval. 1(a) follows, for example in the third case,
Ť

IPI I “ r0, as Y ra, bs Y rb, 1s. For 1(d), we see that transitivity and hence chaos

follow on each sub-interval due to a lack of intervals permuting in pairs.

In the fourth case, let K be the collection of all closed invariant proper sub intervals

rg, hs, not containing 0 or 1, such that r0, gs and rh, 1s permute. Also, if rg1, h1s and

rg2, h2s are in K, then one is a subset of the other because of the density of periodic

points. Let A “ rα, βs be the intersection of all members of K, which can be

degenerate.
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Then A is invariant and r0, αs and rβ, 1s permute. Thus, A, r0, αs and rβ, 1s are

invariant under f 2 and a and b are fixed. This is similar to cases 1-3 above

depending on whether α and β are equal or not, with f replaced by f 2. Thus we can

find a collection of proper non-degenerate invariant closed sub-intervals I with

respect to f 2, satisfying 1 of the theorem. I contains A and subsets of r0, αs and

rβ, 1s. Also, under f , A is invariant and all other members of I permute. But since f

permutes r0, αs and rβ, 1s, these intervals must be permuted in pairs satisfying 2(b).

Let f have a proper non-degenerate invariant sub-interval. If f is transitive, we are

done. Otherwise Da such that f permutes two sub-intervals r0, as and ra, 1s and we

reach a similar situation as in the previous paragraph with α “ β “ a.

Corollary 0.3. Consider a continuous map f : r0, 1s Ñ r0, 1s has a dense set of

periodic points of period at least 3. If both f and f 2 have no proper invariant

non-degenerate sub-interval, then f is chaotic.

Example 2.3.2. A tent map function on r0, 1s with P3 dense (tent map is chaotic)

and 0 not a fixed point is

fpxq “

$

’

’

&

’

’

%

4

3
x `

2

3
, if x P

„

0,
1

4

ȷ

,

´
4

3
x `

4

3
, if x P

ˆ

1

4
, 1

ȷ

.

Conclusion

In this chapter we studied the interrelationship between transitivity and density of

periodic points. By proving Theorem 2.2.1, Theorem 2.2.2 and Theorem 2.2.3

we try to give an all encompassing definition to the concepts concerning stronger

forms of transitivity while studying correspondence between them. Using the

sufficient condition Theorem 2.3.1 we show that chaos implies that a set of points
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with a prime period of at least n is dense. In Example 2.3.1 we give an

counterexample of a system which is Pn dense but it is not Chaotic.In Example

2.3.2 we consider a Chaotic Tent Map with P3 dense .



Chapter 3

Sensitivity and its Stronger Forms

Chaos Theory is a mathematical theory used to study deterministic non-linear

dynamical systems. It differentiates systems based on their sensitivity, which refers

to their dependency on initial conditions. This chapter investigates the sensitivity of

dynamical systems and their stronger forms. It covers various types of sensitivity,

stronger forms of sensitivity, and the relationship between different types. It also

discusses sensitivity for continuous maps on the famous [0,1] interval, subshifts. We

also examine the relative strength of each sensitivity type.

3.1 Types of Sensitivities

In this section we talk about different types of sensitivities and then in the next

section we will discuss examples of the types of sensitivities mentioned.

1. Syndetic Sensitivity : f is syndetically sensitive if there exists δ ą 0 with the

property that for every nonempty open set U Ă X, we have that NfpU, δq is

syndetic.

2. Cofinite Sensitivity : f is cofinitely sensitive if there exists δ ą 0 with the

property that for every nonempty open set U Ă X, we have that NfpU, δq is

cofinite.

43
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3. Thick Sensitivity : f is thickly sensitive if there exists δ ą 0 with the property

that for every nonempty open set U Ă X, we have that NfpU, δq is Thick.

4. Thick Syndetic Sensitivity : f is syndetically sensitive if there exists δ ą 0 with

the property that for every nonempty open set U Ă X, we have that NfpU, δq is

Syndetic and Thick.

5. Thick Periodic Sensitivity : f is Thickly Periodic sensitive if there exists δ ą 0

with the property that for every nonempty open set U Ă X, we have that

NfpU, δq is Thick and Periodic. [21]

6. Strong Sensitivity : f is Strongly Sensitive if there exists δ ą 0 such that for

each x P X and each ϵ ą 0, there exists n0 P N such that for every n ě n0 ,there

is a y P X with dpx, yq ă ϵ and dpfnpxq, fnpyqq ą δ.

7. Asymptotic Sensitivity : f is Asymptomatic Sensitive if there exists δ ą 0 such

that for each x P X and each ϵ ą 0, there exists y P X such that dpx, y) ă ϵ and

lim supnÑ8 dpfnpxq, fnpyqq ą δ .In this case, the pair (x, y) is called an

asymptotic sensitive pair.

8. Li–Yorke Sensitivity : f is Li Yorke Sensitive if there exists δ ą0 such that for

each x P X and ϵ ą0 there exists y P X with dpx, y)ă ϵ such that

lim infnÑ8 dpfnpxq, fnpyq “ 0 and lim supnÑ8 dpfnpxq, fnpyq ą δ [15]

Examples

Example of Syndetical Sensitivity

The below given example below illustrates Syndetical Sensitivity. The reader should

note that the example also helps us disprove the claim that thick sensitivity implies

syndetic sensitivity.



45

Let L0 “ L0 “ 0, L1 “ L1 “ 2 and Ln “ 2L1`¨¨¨`Ln“1 , Ln “ L1 ` L2 ` ¨ ¨ ¨ ` Ln

for all n ě 2 and

X “ r0, 1s Y p
Ť8

n“1rL2n´1,L2n´1 ` 2n ´ 1sq Y p
Ť8

n“1rL2n,L2n ` 1
2nsq

fpxq “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

x ` 2 x P r0, 1s

1
2np2n´1q

px ´ L2n´1 ` L2nq if x P rL2n´1,L2n´1 ` 2n ´ 1s

for some n P N

p2nqp2n ` 1qpx ´ L2n ` L2n`1q if x P rL2n,L2n ` 1
2ns

for some n P N

For any nonempty open subset U of X, there exist a non-degenerate closed interval

I Ă r0, 1s and k P N0 such that fkpIq Ă U . Thus, for any n ą k ,one has

diampf 2n`1´kpUqq ě diampf 2n`1pIqq “ p2n ` 1q ¨ |I| Ñ `8 pn Ñ `8q.

This implies that pX, fq is syndetically sensitive. [22]

Example of Cofinite Sensitivity

The example below illustrates Cofinite Sensitivity. The reader should note that the

example also helps us disprove the claim that thick sensitivity implies syndetic

sensitivity. ă X ˆ Y, f ˆ g ą is multi-sensitive if and only if ă X, f ą or ă Y, g ą is

multi- sensitive.

Let L0 “ L0 “ 0, L1 “ L1 “ 2, and Ln “ 2L1`¨¨¨`Ln´1 ¨ p2nq,

Ln “ L1 ` L2 ` ¨ ¨ ¨ ` Ln for all n ě 2, and set
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X “ r0, 1s Y

˜

`8
ď

n“1

2L2n´2
ď

i“0

rL2n´1 ` i,L2n´1 ` i `
1

2n
s

¸

ď

˜

`8
ď

n“1

2L2n´1
ď

i“0

rL2n ` p2n ` 1qi,L2n ` p2n ` 1qi ` 2ns

¸

Y “ r0, 1s Y

˜

`8
ď

n“1

2L2n´2`4n´4
ď

i“0

rL2n´1 ` 2ni,L2n´1 ` 2ni ` 2n ´ 1s

¸

ď

˜

`8
ď

n“1

2L2n´1´4n`2
ď

i“0

rL2n ` i,L2n ` i `
1

2n
s

¸

For n P N let

An “
“

L2n´1 ` 2L2n´2,L2n´1 ` 2L2n´2 ` 1
2n´1

‰

,

Bn “
“

L2n ` p2n ` 1q ¨ 2L2n´1,L2n ` p2n ` 1q ¨ 2L2n´1 ` 2n
‰

,

Cn “
“

L2n´1 ` 2n ¨ p2L2n2 ` 4n ´ 4q,L2n´1 ` 2n ¨ p2L2n2 ` 4n ´ 4qp2n ´ 1q
‰

,

Dn “
“

L2n ` 2L2n´1 ´ 4n ` 2,L2n ` 2L2n´1 ´ 4n ` 2 ` 1
2n

‰

.

Define f : X Ñ X and g : Y Ñ Y respectively by
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fpxq “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’
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’
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’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

1
2x ` 2 if x P r0, 1s

x ` 1 if x P rL2n´1 ` i,

L2n´1 ` i ` 1
2ns

for some 0 ď i

ď 2L2n´2 , n P N

x ` 2n ` 1 if x P rL2n ` p2n ` 1qi,

L2n ` p2n ` 1qi ` 2ns

for some 0 ď i

ď 2L2n´1 , n P N

2np2n ´ 1qpx ´ L2n´1 ´ 2L2n´2q ` L2n if x P An , n P N

1
p2nqp2n`1q

px ´ L2n ´ p2n ` 1q ¨ 2L2n´1q ` L2n`1 if x P Bn, n P N

and
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gpxq “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’
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’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

x ` 2 if x P r0, 1s

x ` 1 if x P rL2n ` i,

L2n ` i ` 1
2ns

for some 0 ď i

ď 2L2n´1 , n P N

x ` 2n if x P rL2n ` 2ni,

L2n ` 2ni ` p2n ´ 1qs

for some 0 ď i

ď 2L2n´2 , n P N

1
2np2n´1q

px ´ L2n´1 ´ 2n ¨ p2L2n´2 ` 4n ´ 4q ` L2n if x P Cn , n P N

1
p2nqp2n`1q

px ´ L2n ´ 2L2n´1 ` 4n ´ 2q ` L2n`1 if x P Dn, n P N

pX ˆ Y, f ˆ gq is cofinitely sensitive [22]

Example of Thick Sensitivity

The example below illustrates thick sensitivity.

cm Let L0 “ L0 “ 0, L1 “ L1 “ 2, and Ln “ 2L1`¨¨¨`Ln“1 ¨ p2nq,

Ln “ L1 ` L2 ` ¨ ¨ ¨ ` Ln for all n ě 2, and set
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X “ r0, 1s Y

˜

`8
ď

n“1

2L2n´2
ď

i“0

rL2n´1 ` i,L2n´1 ` i `
1

2n
s

¸

ď

˜

`8
ď

n“1

2L2n´1
ď

i“0

rL2n ` p2n ` 1qi,L2n ` p2n ` 1qi ` 2ns

¸

For n P N let

An “
“

L2n´1 ` 2L2n2,L2n´1 ` 2L2n´2 ` 1
2n´1

‰

,

Bn “
“

L2n ` p2n ` 1q ¨ 2L2n´1,L2n ` p2n ` 1q ¨ 2L2n´1 ` 2n
‰

,

Define f : X Ñ X by
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fpxq “
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’

’

’

’
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’

’
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’
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’

%

1
2x ` 2 if x P r0, 1s

x ` 1 if x P rL2n´1 ` i,

L2n´1 ` i ` 1
2ns

for some 0 ď i

ď 2L2n´2 , n P N

x ` 2n ` 1 if x P rL2n ` p2n ` 1qi,

L2n ` p2n ` 1qi ` 2ns

for some 0 ď i

ď 2L2n´1 , n P N

2np2n ´ 1qpx ´ L2n´1 ´ 2L2n´2q ` L2n if x P An , n P N

1
p2nqp2n`1q

px ´ L2n ´ p2n ` 1q ¨ 2L2n´1q ` L2n`1 if x P Bn, n P N

pX, fq is Thickly Sensitive [22]

Example of Strong Sensitivity

The example below illustrates Strong Sensitivity. It pertains to the Shift Map, which

is widely used in Mathematics.

Let Σ2 denote the space of all infinite sequences of 0’s and 1’s with the metric d(x,y)
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=
ř8

i“0
|xi´yi|

2i

Let X be the collection of all sequences which are eventually zero. Then, the shift

map σ : X Ñ X defined as pσpxqqn “ xn ` 1 is strongly sensitive.

However, as orbits of any two points eventually coincide, the map fails to be

asymptotically sensitive.

Example of Asymptomatic Sensitivity

The below-given example illustrates Asymptomatic Sensitivity .

Let X “ r1,8q. Define a map f : X Ñ X as fpxq “ x2.

Then the map defined is asymptotic sensitive but fails to be Li – Yorke sensitive. [24]

Example of Li-Yorke Sensitivity

The below given example illustrates Li Yorke sensitivity.The reader should note that

it is not transitive.

Let us consider a dynamical system which will be a two-sided subshift

X Ă Σ2 “ t0, 1uZ with a special inner structure. For words u, v we will write [u.v] to

denote cylinder consisting of x P Σ2 such that xr´s,0q “ u and xr0,kq “ v for some

s, k ą 0.

Fix an increasing sequence tanu8
n“1 such that a0 “ 1 and an`1 ą 2n`1

řn
i“1 an.

Let l : Lp
ř`

2 q Ñ N be a function defined on all finite words in such a way that if
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w “ w0 ¨ ¨ ¨wn´1 P rLsnpΣ2q then lpwq “
řn´1

i“0 2iwi.

For example lp01q “ 2, lp011q “ 6, etc.

Define a map

π :
ř`

2 Ñ
ř

2 by putting for each x P Σ`
2 Ñ Σ2 and each i P Z:

πpxqi “

$

’

’

’

’

&

’

’

’

’

%

1, lpxr0,nqq “ j and i “ aj for some n ą 0

0, otherwise

It is not hard to verify that the map π is continuous. Note that each point πpxq can

have symbols 1 only at positions in the sequence tanu8
n“1. Furthermore, if

x ‰ y, x, y P Σ`
2 , then for some n and hence for i ě an we never have

πpxqi “ πpyqi “ 1 because lpxr0,iqq ‰ lpyr0,jqqfor every i, j ě n

Put X “ YiPZσ
ipπpΣ`

2 qq and observe that X is a two-sided subshift since it is not

only invariant but also closed because 808,8 0108 P X.For any y P X there is a p

P Z such that y P σppπp
ř`

2 qqIf there are integers i ă j such that yi “ yj “ 1 then we

claim that there exists exactly one n such that an ą j ´ i and an ´ an´1 ď j ´ i.By

the construction, there are uniquely determined indexes 0 ď m ă n such that

am “ i` p ă j ` p. Observe that n satisfies an “ j ` p ą j ` p´ pi` pq “ j ´ i since

i ` p “ am ą 0 and an ´ an´1 ď an ´ am “ j ´ i.On the other hand if t ą n satisfies

the conditions , then at ´ at´1 ą p2t ´ 1qat´1 ą p2n ´ 1qan ą j ´ i, a contradiction.If

t ă n satisfies the conditions, then

j ´ i “ an ´ an´1 ě an ´ an´1 ě p2n ´ 1qan´1 ě an´1t again a contradiction. Indeed,

the claim holds. But then σj´anpyq P πpΣ`
2 and then there is exactly one x P Σ`

2 such

that πpxq “ σj´anpyq. Furthermore, for every r ‰ j ´ an, we have σrpyq ‰ πpΣ`
2 q
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HencepX, σq is Li–Yorke sensitive [23]

3.2 Stronger Forms of Sensitivity

Lemma 9. If (A) is an M-system, with S as a minimal subset of A and V as a

nonempty open subset of A, then N(V, B(S, δ)) is thickly syndetic for any δ ą 0.

Proof. For any k P Z`, since g is uniformly continuous, so D δ
1

ą 0, such that for any

dpa1, b2q ă δ
1

, dpgipa1q, g
ipa2qq ă δpi “ 1, 2, ..., kq. For any transitive point a P V and

any minimal set S,m P Z`, such that dpgmpaq, Sqq ă δ1{2 ,so there is a minimal point

á P V with dpgmpaq, Sqq ă δ
1

. Since a
1

is almost periodic, there exists a syndetic

setniwith dpgnipaq, Sq ă δ
1

, so dpgni`jpáq, Sq ă δpj “ 1, 2, ..., k, i “ 1, 2, 3, ...q. So we

have NpV,BpS, δqq that is thickly syndetic.

Minimal System

A dynamical system pA, gq| is called minimal if A| does not contain any non-empty,

proper, closed f -invariant subset. In such a case we also say that the map g itself is

minimal. Thus, one cannot simplify the study of the dynamics of a minimal system

by finding its nontrivial closed subsystems and studying first the dynamics restricted

to them.

Given a point x in a system pA, gq, |Orbgpaq “ a, fpaq, g2paq, ...| denotes its orbit (by

an orbit we mean a forward orbit even if f | is a homeomorphism) and ωgpaq| denotes

its ω|-limit set, i.e. the set of limit points of the sequence a, gpaq, g2paq, ...| . The

following conditions are equivalent:

1. pA, gq is minimal, Every orbit is dense in A , ωgpaq “ A for every a P A .

2. A minimal map g is necessarily surjective if A is assumed to be Hausdorff and

compact.
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In this section, we define a set NpY, ϵq “ n P N : diamp(gqnpY qq ą ϵ we can tell for

sensitivity for given dynamical system pX, (gqq. That is pA, (gqq is sensitive if and

only if NpY, ϵq ‰ ϕ for some ϵ ą 0 and Y ‰ ϕ, Y Ă A.

In the following theorems, we will see how fewer conditions can imply different types

of sensitivity for the given topological dynamical system :

Theorem 3.2.1. If pA,Gq is minimal and sensitive, then we can say pA, gq is

syndetically sensitive.

Proof. As given g is sensitive hence, by definition of sensitivity for sensitivity

constant ϵ D a, b P Y Ă A, andY ‰ ϕ and n P Z` such that dpgnpaq, gnpbqq ą ϵ. We

can say D an open set Y1 Ă Y such that dpgnpaq, gnpY1qq ą ϵ. It is also mentioned

that pA, gq is minimal, D k P Z` such that gkpaq P Y1 Ă Y so,

dpgnpaq, gn`kpaqq ě dpgnpaq, gnpY1qq ą ϵ.

Because f is uniformly continuous we can write: Dδ P p0, ϵ{4q such that for any

dpa1, a2q ă δ, dpgipa1q, g
ipa2qq ă ϵ{4, pi “ 1, 2, ..., kq. Also, gnpaq is a minimal point, so

Nppgnpaq,Bpgnpaq, δqq is syndetic. For any m P Npgnpaq,Bpgnpaq, δqq, we have

dpgnpaq, gm`npaqq ă δ , so dpgk`npaq, gk`n`mpaqq ă ϵ{4; that is,

dpgm`npaq, gm`n`kpaqq ě dpgnpaq, gk`npaqq,

d ( gnpaq, gm`npaqq ´ dpgk`npaq, gk`m`npaqq ą ϵ{2. [28]

This means NpY, ϵ{2q is syndetic.

Theorem 3.2.2. Weak mixing implies thick sensitivity.

Proof. Let ϵ P 0, diampAq and let V be a nonempty open set of A. [29] g is transitive
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. Y is a fixed point of gpgpAq “ Aq. By density of transitive points of

g in KpYq,we have K Ă V, a transitive point of g. [30] NpK,BHdpA, ϵqq is thick; that

is, NpV, ϵq is thick, because NpK,YpA, ϵqq Ă NpV, ϵq.

Theorem 3.2.3. If pA, gq is a minimal weakly mixing TDS, then it is thickly

syndetically sensitive.

Proof. Since A is a fixed point of pKpAq, gq, by the proof of [29]. If pA, gq is a

transitive non-minimal TDS with a as a transitive point and S as a minimal set of A

, then Npa,YpS, δqq is thick for every δ ą 0, it is sufficient to prove that

n : Hdpg
npVq,Aq ă ϵ is syndetic for any open set V of A and any ϵ ą 0. Given V and

ϵ, let K Ă V be a transitive point for g. So there exist n P Z` such that

Hdpg
npKq,Aq ă ϵ

6 . Choose γ ą 0 to be an ϵ
6 modulus of uniform continuity for gn so

that BpK, γq Ă V. Then dpbi, ciq ă γ for i “ 1, ..., k implies bi, ..., bk Ă V and

Hdpg
npa, b1, ..., bkq, gnpa, c1, ..., ckqq ă ϵ

6 .

Since the orbit of a is dense in A, there are strictly increasing integers

ni : i “ 1, 2, ..., k such that dpgnipaq, ciq ă γ for i “ 1, ..., k. Hence,

Hdpg
npa, gn1 paq, ..., gnk paq,Aq ă ϵ

2 . Because g is uniformly continuous, so D δ P p0, ϵ4q

such that for any dpa1, a2q ă δ, dpgipa1q, g
ipa2qq ă ϵ

2 , pi “ 1, 2, ..., nkq.Since gnpaq is a

minimal point,Npgnpaq,Bpgnpaq, δqq is syndetic.

For any m P Npgnpaq,Bpgnpaq, δqq i.e. dpgm+npaq, gnpaqq ă δq, we have

dpgmpgn`nipaqq, gn`nipaqq “ pgnipgm`npaqq, gnipgnpaqqq ă ϵ{2, that is,

Hdpg
m`npAkq, gnpAkqq ă ϵ

2 . Then,

Hdpg
m`npV q, Aq ď Hdpg

m`npAkq, Aq ď Hdpg
m`npAkq, gnpAkqq ` Hdpg

npAkq, Aq ă ϵ.

Theorem 3.2.4. If pA, gq is a non-minimal M -system, then it is thickly syndetically
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sensitive.

Proof. Let A1,B1 be minimal sets of g with dpA1, B1q “ a1 and

let V be a nonempty open set of A. For any k P Z`, since g is uniformly continuous,

so D δ ą 0, such that for any dpa1, b2q ă δ, dpgipa1q, g
ipa2qq ă a1

4 , pi “ 1, 2, ..., kq.

By Lemma 1, we have NpV,BpA1, δqq, NpV,BpB1, δqq, thickly syndetic, so we have

NpV,BpA1, δqq, NpV,BpB1, δqq, syndetic. Thus, for every m P NpV,BpA1, δqq,

N(V, B(B’, δqq , tm,m ` 1, ...,m ` ku Ă NpV,BpA1, a
1

4 qq X NpV,BpB1, a
1

4 qq. By the

arbitrary nature of k ,NpV,BpA1, a
1

4 qq X NpV,BpB1, a
1

4 qq is thickly syndetic; that is,

NpV, a
1

2 q is thickly syndetic.

Corollary 0.4. Devaney chaos (or P-system without isolated points) implies thickly

periodic sensitivity.

Proof. The proof is similar to the above theorem.

Deriving sensitivity from transitivity

Stronger forms of transitivity along with few special conditions imply stronger forms

of sensitivity. We will now focus on results that could be deduced in the context of

stronger forms of transitivity.

Proposition 4. Let pA, gq be a mixing dynamical system. Then, for any positive

δ ă diampAq, f is cofinitely sensitive with δ as a constant of sensitivity.

Devaney defined a dynamical system pA, gq to be chaotic if g is transitive, and

sensitive and if P pgq is dense in A. [14] It was soon observed that if A is not finite, g

is transitive and if P pgq is dense in A, then g is sensitive. [25] This was improved by
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showing that if gis a transitive, non-minimal map with a dense set of minimal points,

then f is sensitive. [32]

Theorem 3.2.5. Let pA, gq be a dynamical system. If g is syndetically transitive

but not minimal, then g is syndetically sensitive.

Proof. Let a1 P A be such that Ogpa
1q is not dense in A. Let b1 P A Ogpa1q, and put

δ “ 1
4 , dpb1, Ogpa1qq ą 0. Write V “ Bpb1, δq. If Y Ă A is any nonempty open set,

then NgpY, V q is syndetic, with say M1 as a bound for the gaps. Choose an open set

W around a such that a P W ñ dpgipa1q, gipaqq ă δ for i “ 0, 1, ...,M1. Note that

then dpgipW q, V q ě 2δ for i “ 0, 1, ...,M1, by the choice of δ. Now, NgpY,W q is also

syndetic.

Let M2 be a bound for the gaps in NgpY,W q. We show that NgpY, δq is syndetic with

M1 ` M2 as a bound for the gaps. Let n P N . Choose j P 1, ...,M2 and u P Y such

that gn`jpuq P W . Then, by the choice of W , one has that for every

i “ 1, ...,M1, dpgn`j`ipuq, V q ě 2δ. Choose i “ 1, ...,M1 and u
1 P Y such that

gn`j`ipuq P V . Then, for this particular i, we have dpgn`j`ipuq, gn`j`ipuqq ě 2δ ą δ.

Since n P N is arbitrary and since j ` i ď M1 ` M2, the argument is complete.

Corollary 0.5. For a syndetically transitive dynamical system, sensitivity implies

syndetical sensitivity.

Proof. If the system doesn’t have a dense set of minimal points, we apply the above

theorem.

Example 3.2.1. The example illustrates Syndetical Transitivity alone doesn’t imply

sensitivity.
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If α is irrational, then the isometry a Ñ e2πiαa on the unit circle is known as an

irrational rotation. It is well known that any irrational rotation is minimal, and

hence syndetically transitive. This example shows that syndetical transitivity alone

cannot imply sensitivity. However, we have the following sufficient condition as our

next proposition:

Proposition 5. LetpY, gq be a dynamical system. If g is syndetically transitive and if

inf
nPA1

sup
aPA

dpa, gnpaqq ą δ ą 0 for some thick set A1 Ă N , then g is syndetically sensitive

with δ as a constant of sensitivity.

Proof. Let Y Ă A be nonempty open. Since NgpY, Y q is syndetic and A1 is thick,

there exists n P NgpY, Y q X A1. Put W “ Y X g´npY q. Then, W is nonempty and

open. Since n P A1, by hypothesis, we can find a P A such that dpa, gnpaqq ą δ. Let V

be an open set containing a such that b P V implies dpb, gnpbqq ą δ. Now, consider the

syndetic set NgpW,V q. We claim that it is contained in NgpY, δq. Let k P NgpW,V q

and let a1 P W Ă Y be such that gkpa1q P V . Then, dpgkpa1q, gk`npa1qq ą δ by the

choice of V . So if we put b1 “ gnpa1q, then dpgkpa1q, gkpb1qq ą δ. Also,

b1 P gnpW q Ă Y . Therefore k P NgpY, δq, and this establishes the claim.

Corollary 0.6. Let pA, gq be a syndetically transitive system. Suppose that there

exist two distinct points a, b P A and a thick set nk : k P N with

lim
kÑ8

dpgnk paq, gnk pbqq “ 0. Then g is syndetically sensitive.

Proof. Choose a positive δ ă 1{3dpa, bq. Let k0 P N be such that

dpgnk paq, gnk pbqq ă δ for every k ě k0. Then, for each k ě k0, by triangle inequality we

have that dpa, gnk paqq ą δ or dpb, gnk pbqq ą δ. So the above proposition applies with

A1 “ nk P N : k ě k0.
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Sensitivity of continuous maps on [0,1]

We’ll learn about how every sensitive map g : r0, 1s Ñ r0, 1s is cofinitely sensitive. It

is partially because of the ample presence of the periodic points in the given set .

In the following theorems and prepositions, we will repeatedly use the following

concept: if g : r0, 1s Ñ r0, 1s is sensitive, then for every interval J Ă r0, 1s and every

n P N , gnpJq is also an interval.

Lemma 10. Let L Ă R be a compact interval and g : L Ñ L be sensitive. Then, the

closure of the set of periodic points of g contains an interval.

Proof. From proposition 2.2.5 (Blokh), it can be deduced that there exists a closed

interval J Ă L and an n P N such that J is g ´ n-invariant and gn|J : J Ñ J is

transitive. of [31] But a transitive map of a closed interval has a dense set of periodic

points [45]. Thus J Ă P pgnq “ P pgq.

Theorem 3.2.6. Let g : r0, 1s Ñ r0, 1s be sensitive. Then g is cofinitely sensitive.

Proof. Let δ ą 0 be a constant of sensitivity for f . Choose finitely many periodic

points a1, ..., ar P r0, 1s such that for any interval J Ă P pgq with diamrJs ą δ, we

have that |J X a1, ..., ar| ě 2. Let α “ min|aiaj| : 1 ď i ă j ď r ą 0 and let k P N be

such that gkpxiq “ ai for 1 ď i ď r. Let β ą 0 be such that for every

a, b P r0, 1s, |ab| ď β implies |gipaqgipbq| ă α for 0 ď i ď k. We claim that f is

cofinitely sensitive with β as a constant of sensitivity.

Let J Ă r0, 1s be any interval. Since diamrgnpJqs ą δ for infinitely many n, it is easy

to see that YgnpJq has only finitely many connected components. Hence the same is

true for
8
Y
n“0

gnpJq. Therefore, one can find a connected component L, which must be a
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closed interval, of
8
Y
n“0

gnpJq and an n P N such that gnpLq Ă L. Then, gn|L : L Ñ L

is sensitive (with some constant of sensitivity). By the above lemma, P pgn|Lq

contains an interval. This implies that, for some s P N, gspJq X P pfq contains an

interval, say K. Now, for some t P N , diamrgtpKqs ą δ. But the interval gtpKq is

contained in P pgq as P pgq is g -invariant. Therefore, |g1pKq X a1, ..., ar| ě 2.

As a consequence, diamrgt`jpKqs ą β for every j P N , by the choice of β. Hence,

diamrgs`t`jpJqs ą β for every j P N . That is, s ` t ` N Ă NgpJ, βq.

Thus all sensitive maps of r0, 1s exhibit a very strong form of sensitivity. We know

that transitivity implies sensitivity on [0, 1]. [45] Therefore, by the above theorem,

all transitive maps on r0, 1s are cofinitely sensitive. In the rest of the section, we

distinguish sensitivity, syndetical sensitivity, and cofinite sensitivity using subclasses

of dynamical systems known as subshifts.

3.3 Relationship Between Different Types of Sensitivity

In plain words, sensitivity simply means that given any point, there exists another

point arbitrarily close such that the orbits of these two points move apart by a fixed

distance after some finite instants. The system is strongly sensitive if after a

particular instant, for each successive instant, there are points arbitrarily close to

any point, such that their orbits move apart by a fixed distance from the orbit of this

particular point. If for any point there is a point arbitrarily close by, such that the

orbits of these two points move apart infinitely often, then the system is

asymptotically sensitive. If in addition to moving apart infinitely often, these orbits

also come arbitrarily closer infinitely often, then the system is Li–Yorke sensitive. In

general, these properties though distinct, satisfy the relation:

sensitive ð strongly sensitive
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sensitive ð asymptotic sensitive ð Li Yorke sensitive. [24]

Every strongly mixing semiflow is weakly mixing. Every strongly multisensitive

semiflow is multi-sensitive. Every thickly syndetically sensitive semiflow is thickly

sensitive. Every thickly syndetically sensitive semiflow is syndetically sensitive.

Every thickly periodically sensitive semiflow is periodically sensitive. Every thickly

periodically sensitive semiflow is thickly syndetically sensitive. Every periodically

sensitive semiflow is syndetically sensitive. Every multi sensitive (resp. thickly

sensitive; syndetically sensitive) semiflow is sensitive. [33]

Moreover, we can infer from previous definitions that mixing ñ thickly periodically

sensitive ñ thickly syndetical sensitivity ñ thick sensitivity and syndetical

sensitivity:

Conclusion

In this chapter we studied various forms of sensitivity. We analysed interesting

examples arising from concrete spaces which displayed one or more type of sensitivity.

Then we categorized these sensitivities based on their relative strength. Theorem

3.2.2 and Theorem 3.2.3 helped us establish a relationship between Weak mixing

and Thick sensitivity.We also proved Theorem 3.2.5, which helps us deduce nature

of sensitivity in the context of stronger forms of transitivity. We also proved

Theorem 3.2.6 which helps establish the fact that every continuous map on [0,1] is

cofinitely sensitive. Using all the necessary and sufficient conditions that we proved

in this chapter we established correspondence between various forms of sensitivity .



Chapter 4

Chaos Theory

Chaos, by definition, refers to the unpredictability of dynamical systems over time.

It is one of the most important characteristics defining dynamical systems. in this

section, we study how chaos is defined, what it implies and what are various

examples of it. We also provide an overview of relations between different types of

chaos. Finally, We study some interesting examples of chaos like the ‘tent map’, the

‘logistic map’, and the ‘shift map’. We also observe in these, the ‘near chaos’ cases,

i.e., where these are not chaotic due to one property not being satisfied.

4.1 Different Types of Chaos

Here, we provide an overview of different Definitions of chaos given by different

mathematicians:

Definition 4.1.1 (Devaney’s Chaos [40]). A cascade pY, fq is called chaotic if it

satisfies:

1. pY, fq is topologically transitive

2. pY, fq is sensitive

3. PerpY q is dense in Y or PerpY q “ Y

62
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Definition 4.1.2 (Wiggins Chaos [41]). Let f : Y Ñ Y be a continuous map where

Y is a metric space. Then f is said to be Wiggins Chaotic if:

1. f is topologically transitive.

2. f depicts sensitive dependence on initial conditions.

Definition 4.1.3 (Li-Yorke Chaos [42]). Under this condition, let x, y P Y . The pair

px, yq P pY, Y q is a Li-Yorke scrambled pair if:

1.

lim
nÑ8

suppdpfnpxq.fnpyqqq ą 0

2.

lim
nÑ8

infpdpfnpxq.fnpyqqq “ 0

The map is Li-Yorke chaotic if it has an uncountable scrambled set in Y .

Definition 4.1.4 (Lyapunov Chaos [43]). Consider a continuous differentiable map

f : R Ñ R. Then f is said to be Lyapunov Chaotic if:

1. f is topologically transitive

2. f has a positive Lyapunov constant

Definition 4.1.5 (Knudsen Chaos [44]). let f : Y Ñ Y be a continuous map on a

metric space py, dq, then the dynamical system pY, fq is Knudsen Chaotic if:

1. f has dense orbits.

2. f is sensitive to initial conditions.

Definition 4.1.6 (Martelli Chaos). Let f be a continuous map from a compact

metric space X with standard metric d into itself. Then f is said to be Martelli

Chaotic if there exists x0 P X such that x0 has a dense orbit that is unstable.
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Definition 4.1.7 (Auslander-Yorke Chaos [52]). Let X be a space with usual metric

d, then a map f is Auslander-Yorke chaotic if it is sensitive and topologically

transitive. A semiflow pT,Xq is said to be strongly Auslander-Yorke chaotic if it is

topologically transitive, sensitive, and has a dense set of Poisson stable points.

Definition 4.1.8 (Ruelle Takens Chaos [52]). Let X be a space with usual metric

d,then a map f is Ruelle-Takens chaotic if it is point-transitive and sensitive. A

semiflow pT,Xq is said to be strongly Ruelle-Takens chaotic if it is point-transitive,

sensitive, and has a dense set of Poisson stable points.

Definition 4.1.9 (Poincaré Chaos [53]). A semiflow pT,Xq is said to be Poincaré

Chaotic if it has an unpredictable transitive point.

Theorem 4.1.1 ( [49]). Assume that for a metric space X, a map f : X Ñ X is

Devaney chaotic. Then it has an uncountable scrambled set for f and hence it has

Li-Yorke chaos. Moreover, if f is totally transitive, then f is densely Li-Yorke

chaotic. Particularly, chaos in the sense of Devaney is stronger than that in the sense

of Li-Yorke.

Proof. Assume that f has a fixed point p. Thus, since f is transitive, for every

x P X, PRpxq is a Gδ. Denote by Tranf , the set of transitive points of f . If

x P Tranf , there exists an ni with f
nipxq Ñ p. This implies that f ipxq is proximal to

x for each i ě 1. Hence, PRpxq is a dense Gδ set for each x P Tranf .

For further proof, we require a lemma:

Lemma 11. Assume that X is a complete separable metric space without isolated

points. If R is a symmetric relation with the property that there is a dense Gδ subset

A of X such that for each x P A, Rpxq contains a dense Gδ subset, then there is a

dense, subset B of X with uncountably many points such that B ˆ Bz∆ Ă R

Now, let R “ LY RpX, fq and A “ Tranf . For each x P A, it is clear that

Rpxq “ PRpxqzARpxq contains a dense Gδ subset. By the above lemma, there is a
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subset B of X such that B ˆ Bz∆ Ă R and B is uncountable. Clearly, B is a

scrambled set of f .

Moreover, assume that f has a periodic point of period n ą 1. Let x P Tranf . Then

ωpx, fq “ X. Set Di “ ωpf ixq, fnq for each 0 ď i ď n ´ 1. As fpDiq “ Di`1p mod nq,

we know that each Di is uncountable and contains a periodic point of f with period

n. As fn|D0
is transitive, and has a fixed point of fn, we can use the result just

proved. So, there is an uncountable scrambled set B for fn. Clearly, B is also a

scrambled set for f . Hence, f is Li-Yorke Chaotic. Following this, if ff is totally

transitive, a similar argument shows that f is densely Li-Yorke chaotic. Hence

proved.

Theorem 4.1.2. Devaney Chaos implies Wiggins Chaos and Martelli Chaos directly.

Proof. Now, since Wiggins chaos demands only 2 or 3 criteria required for Devaney

chaos, hence, Wiggins chaos is directly implied by Devaney chaos.

As for Martelli chaos, for any point x0 P X, observe that it is dense with r equal to

the sensitivity level as f is already Devaney chaotic. Thus, Devaney chaos implies

Martelli’s chaos as well. Hence proved.

4.2 Theorems on Chaos

Now, we will see some theorems on Chaos.

Theorem 4.2.1. [44] If X is a metric space and X Ñ X is transitive and has dense

periodic points, then it is sensitive as well. Hence, f is chaotic.

Proof. Since the periodic points are dense, observe that we can find a δ ą 0 such that

for any x P X, there is a periodic point q such that dpx,Opqqq ą δ{2 where Opqq

denotes the orbit of q and d is the distance function on X. Similarly, we can find 2

periodic points q1 and q2 such that dpOpq1q, Opq2qq “ δ. Hence, for any x P X let
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d1 “ dpx,Opqiqq; i “ 1 or 2, be distance from the farther orbit, and by the triangle

inequality

dpx,Opqjqq ě dpx,Opqiqq ` dpOpqiq, Opqjqq ě δ{2; j ‰ i

so, any x is at least a distance of at least δ{2 from any of the 2 orbits. Now, we will

prove sensitivity.

Let x P X be arbitrary and let N pxq be a neighborhood of x. Let Bδpxq be a ball

with radius δ centered at x. As periodic points are dense, we can find a

p P N X Bδpxq with a period, say n. From the above, we can find a periodic point

q P X with orbit Opqq at a distance of at least 4δ from x. Also, let

M “

n
č

i“0

f´i
pBδpf

i
pqqqq

Since M is the inverse of an open ball, it is open. Also, it is non-empty since q P M .

Also, by transitivity, there is a y P U and a natural number l such that f lpyq P M .

Now, let j be the integral part of l{n ` 1. So, 1 ď nj ´ l ď n. By construction,

fnjpyq “ fnj´l
pf lpyqq P fnj´l

pMq Ď Bδpf
nj´l

pqqq

and since fnjppq “ p.Using triangle inequality:

dpfnjppq, fnjpyqq “ dpp, fnjpyqq ě dpx, fnjpyqq ´ dpp, xq ě

dpx, fnj´l
pqqq ´ dpfnj´l

pqq, fnjpyqq ´ dpp, xq

Finally, since p P Bδpxq and fnjpyq P Bδpf
nj´lpqqq, we have:

dpfnjppq, fnjpyqq ą 4δ ´ δ ´ δ “ 2δ
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Using triangle inequality again,

dpfnjppq, fnjpyqq ě dpfnjpxq, fnjpyqq ´ dpfnjppq, fnjpxqq ě 2δ ´ δ “ δ

A similar argument can be made for dpfnjppq, fnjpxqq. Either way, we have found a

point in N such that its njth iterate makes the distance of a point x from p or y

more than a number δ.

Theorem 4.2.2 ( [25, 45]). Let I be a, not necessarily finite, interval and f : I Ñ I

be a continuous and topologically transitive map. Then the map is chaotic. That is,

periodic points of f are dense in I and f has sensitive dependence on initial

conditions.

Before proving this theorem, we need to prove a lemma:

Lemma 12. Suppose that I is a, not necessarily finite, interval and f : I Ñ I is a

continuous map. If J Ă I is an interval which contains no periodic points of f and

let x, fmpxq, fnpxq P J for 0 ă m ă n. Then either x ă fmpxq ă fnpxq or

x ą fmpxq ą fnpxq.

Proof. We will prove this by contradiction. Suppose we can find a x P J such that

x ă fmpxq and fmpxq ą fnpxq.

Let

hpxq “ fmpxq

. Then, from our assumption, x ă hpxq. Now, for any k P N such that k ě 1, let

hk`1pxq ă hpxq. Then function hkpxq ´ x is positive at x and negative at gpxq. By

Intermediate Value Theorem, there exists a point c P px, gpxqq Ă J such that

gkpcq ´ c “ 0, giving a km-periodic point of f in J . Hence, x ă gkpxq for all K ě 1.

In particular, for k “ n ´ m ą 0, we have x ă gm´mpxq “ f pn´mqmpxq. Since we

assumed that f pn´mqpfmpxqq ă fmpxq, taking g “ fn´m, we get

f pn´mqmpfmpxqq ă fmpxq.
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But then again, using the above argument, we get an pn ´ mqm-periodic point in J

and thus we have a contradiction. So, our lemma is proved. A similar argument can

be made for the other case px ą fmpxq ą fnpxqq

Now, we prove the theorem:

Proof of Theorem 4.2. Suppose the f is continuous and topologically transitive. Due

to the above result, we only need to show that periodic points of I are dense in I.

This is because, by Theorem 4.1, transitivity and denseness of periodic points imply

chaos.

We will prove this using contradiction. Let periodic points be not dense in I. Then,

there exists an interval J Ă I with no periodic points. Let x P J be such that it is

not an endpoint of J . Moreover, we take an open neighborhood of x, N Ĺ I, and an

open interval E Ă JzN . Since f is topologically transitive on I, there exists a

natural number m ą 0 with fmpN q X E ‰ H and thus a y P J with fmpyq P E Ă J .

Now, since J contains no periodic points, we know that y ‰ fmpyq and since f is

continuous, this implies that we can find a neighborhood U of y with

fmpUq X U “ H. Now, since U is an open set, topological transitivity states that we

can find an n ą m and z P U with fnpzq P U . But then we have 0 ă m ă n and

z, fnpzq P U which violates the lemma. Thus we have a contradiction and our

theorem is proved.

4.3 Illustrations of Chaos on Different Dynamical Systems

In this section, we provide various examples of the results mentioned above. These

examples further strengthen our theorems and proofs mentioned above.

Example 4.3.1. Define a tent map f on metric X “ r0, 1s with standard topology

as :

fpxq “ mintcx, cp1 ´ xqu
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for c P N We will show that for c ą 1, this is chaotic, not only in the sense of

Devaney but in the sense of Lyapunov as well.

Proof. Now, for c ă 1, observe that for any x P X, fnpxq ă 1. This is because if for

some k, without loss of generality, let fkpxq “ cfk´1pxq ą 1, then fk´1pxq ą 1
c ą 1

and so, we trace back to x where x ą 1
cˆp1´cqˆ¨¨¨

ą 1 which is a contradiction. Thus,

for any sensitivity level β ą 1, we cannot find any y P X such that dpx, yq ą 1 since

both x and y are less than 1, hence the tent map is not sensitive for c ă 1 and hence

not Devaney chaotic.

Using [38], for c ą 1, let A and B be 2 non-empty open subsets of X, we will prove

that there exists an n P N such that nA “ X and hence fnpAq X B ‰ H.

Now, observe that the map fn maps any subinterval of form, without loss of

generality, Jk,n “ r k
cn ,

k`1
cn s; for k “ 0, 1, 2, . . . , cn ´ 1. And for this particular n,

successive iterations make these subintervals coincide such that fnpjk,nq “ r0, 1s.So,

for any A Ă X, we can find an n sufficiently large such that Jk,n Ď A and

r0, 1s “ fnpJk,nq Ď fnpAq

hence

X “ fnpAq

hence X is the orbit of A, thus, there is an n P N such that fnpAq X B ‰ H. So, f is

topologically transitive.

Now, we prove the denseness of periodic points. Now, without loss of generality,

assume that c is even and let Y “ ta{b P Q X Xu, such b is odd and gcdpa, bq “ 1.

So, this set becomes our set of periodic points. This is because, for any y P Y , we

cannot find any n such that the denominator becomes even. So, with this given

denominator and range r0, 1s, there are only a finite number of values that fnpyq can
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take, and hence, it eventually circles back to itself, making it periodic. Now, to show

that it is dense in X, observe that for any x P X, we can find a subset J of X such

that both endpoints belong to Y with the same denominator. Let ϵ ą 0 be arbitrary,

so, by dividing J into halves of intervals containing x, by density theorem, we always

find rational numbers in each iteration. Successively, we reach a point where we get

an endpoint y P J such that dpx, yq ă ϵ. Now, if y “ a{2k for some k ě 2; we have

that z “ a{p2k ` 1q ă y and hence dpz, xq ă dpz, yq ă ϵ, hence, we have found a point

z in Y in neighborhood of x such that dpz, xq ă ϵ. Thus, the periodic points of f are

dense in X. Since X is an infinite metric, it follows that f is sensitive as well and

hence, f is Devaney chaotic for all c P N; c ą 1.

On the other hand, observe that the Lyapunov constant is:

lim
NÑ8

1

N

N
ÿ

n“1

log2 |f 1
pxnq| “ lim

NÑ8

1

N

N
ÿ

n“1

log2 c “ log2 c

Now, since we have already established that f is topologically transitive, the

Lyapunov constant is positive when c ą 1 and negative when c ă 1, hence, f is

Lyapunov chaotic when c ą 1. Hence proved.

Example 4.3.2. Let X “ r0, 1s be a metric space with standard topology and usual

metric, then the map f : X Ñ X defined by fpxq “ µxp1 ´ xq;µ P p0, 4s is called the

Logistic Map. We will prove that this is chaotic for µ “ 4.

Proof. Now observe that; for any µ; the map f achieves a maximum value at

x “ 1{2. Hence, for µ ă 4; the map achieves a maximum value of µ{4 at x “ 1{2. So,

let A and B be two non-empty open subsets in X such that A Ď r0, µ{4q and

B Ď pµ{4, 1sq. Now, observe that, for any amount of iterations on A, the maximum

it can reach is µ{4 and there does not exist any n P N such that fnpAq X B ‰ H,

hence, the logistic map is not transitive for µ ă 4.

Now, for µ “ 4, define a homomorphism from the tent map, denoted by g to the



71

logistic map f given by :

hpxq “ rsinppπxq{2qs
2

Clearly, for x P r0, 1s, this map is surjective and by definition 2.23, it follows that

since g is transitive, so is f , and hence, the logistic map is topologically transitive.

Now, using Theorem 4.2, since X is an interval and we have proved above that is

topologically transitive, it follows that f is chaotic. Hence proved.

Example 4.3.3. Let U “ r0, 1q with usual metric and standard topology, and let

f : U Ñ U be a map defined by

fpxq “

$

’

’

&

’

’

%

2x if 2x P U

2x ´ 1 otherwise

(4.3.1)

This is called the angle-doubler map. We will prove that this map is chaotic.

Proof. Now, to prove transitivity, observe that from Example 5.1, when c “ 2, for

any two nonempty open subsets A and B of U, we can find points of form k1{2
m for

some k1,m P N. We also showed that in successive iterations with such points, we

eventually get the nthe iteration as 1, which is 0 under this map. So, for

x “ k1{2
m P A, fmpxq “ 0.

And since f is continuous, fmpAq includes an interval of form r0, bq for some b P X.

Any interval of this form will have an image U after a finite number of iterations, say

l. Hence, n “ m` l implies fnpAq “ A and thus, fnpAq XB ‰ H. Hence proved that

f is topologically transitive.

Now, for sensitivity, let x P U and U P N pxq. Pick any y P Uzx; then Dm P N such

that 1{2m ď dpx, yq ď 1{2m´1. Now, f doubles the distance between any 2 points

with a gap less than 1{4. Hence, if n ´ m “ 2, then 1{4 ď dpfnpxq, fnpyqq ă 1{2.

Thus angle-doubler map is sensitive with a sensitivity level 1{4.
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Finally, to show DPP, consider the set

D “ ta{b P pQ X Xq|b is odd and gcdpa, bq “ 1u

. Clearly, for each b, there are only finite values the function can take, and hence, the

points are periodic. However, unlike a tent map, there may be more than one orbit

for any b. So, this set is dense in U, as already shown in Example 5.1. Thus, the

angle-doubler map has DPP and is chaotic.

Thus, our proof is complete.

Example 4.3.4 (Shift Map). Consider the shift map in Definition 1.3.12, we will

prove that this map is chaotic.

Proof. • The denseness of periodic points:

Let a point be denoted by x “ px0x1x2 . . .q P Σ and let ϵ ą 0 be arbitrary. Now,

for the set of periodic points to be dense in Σ we need to construct a periodic

point within ϵ-neighborhood of x. So, we need a periodic point whose first n` 1

terms agree with x.This is because for any z “ pz0z1z2 . . .q P Σ with

zk “ xk; k “ 0, 1, . . . , n, by Proximity Theorem, Definition 1.3.11,

dpz, xq ă 1{2n.And by Archimedean principle, we can find an n P N with

1{2n ă ϵ.

We take a point y “ px0x1x2 . . . xnq. Clearly, from the above arguments,

dpx, yq ă 1{2n ă ϵ

and y is periodic as well. Hence proved that periodic points of σ are dense in Σ.

• Transitivity: For this, choose any x, y P Σ and an ϵ ą 0. We will construct a z

whose orbit coincides with orbits of both x and y. Now, choose an n such that

1{2n ă ϵ. From the above, for any new point having first n` 1 terms same as x,

it is within x and the same can be said for y.
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Now, construct:

z “ p 0 1
loomoon

1 block

00 01 10 11
looooomooooon

2 blocks

000 001 . . .
looooomooooon

3 blocks

. . .q

This has been made by sticking together all sequences of length 1, then length 2,

and so on. Thus, any sequence of length n will appear in z at any point in time.

Now, for the n ` 1 terms of x, these are a sequence of length n ` 1, and hence

by construction, they must be somewhere in z. So, there exists a k1 such that

the first n ` 1 terms of σk1pzq are the same as those of x,so, orbit of z coincides

within ϵ of x.

Similarly, there exists a k2 such that the first n ` 1 terms of σk2pzq are the same

as that of y, so, the orbit of z coincides with y as well. Hence, we can say that

after some iterations, orbits of x and y observe an intersection (inside z), hence,

the shift map is transitive.

• Sensitivity: To establish a sensitivity, we choose a sensitivity level, say 1. Now,

pick any x P Σ and any ϵ ą 0. Then pick any n such that 1{2n ă ϵ. Now, pick a

point within ϵ of x. We will show that its orbit will diverge from that of x by at

least 1.

Let y ‰ x be such that dpx, yq ă 1{2n. So, this means that the first n ` 1 terms

of x and y must be the same. And since x ‰ y there exists a k ą n such that

xk ‰ yk. So, considering these points, σkpxq “ xk and sigmakpyq “ yk,distance

between them is:

dpxk, ykq “
ÿ

ně0

|sn`k ´ tn`k|

2n
ě

|sk ´ tk|

20
“ 1

Hence proved that both points diverge by at least 1.

Hence, we conclude that the shift map is a chaotic dynamic system.

Example 4.3.5 ( [53]). Consider 2 cascades pX, fq and pY, gq where X “ r0, 1s with
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the subspace topology of real line R, Y “ ra, bs with discrete topology and

continuous maps f, g on X, y, respectively, defined as:

fpxq “

$

’

’

&

’

’

%

2x, for x P r0, 1{2s

2 ´ 2x, for x P r1{2, 1s

gpaq “ b and gpbq “ a.

Now, since the tent map is locally eventually onto, i.e., for every nonempty open

subset U Ď r0, 1s, there exists a k P N such that fnpU“r0, 1s for all n ě k. Also, the

cascade pX, fq is Devaney chaotic. We claim that the product cascade pX ˆ Y, f ˆ gq

is strongly Auslander-Yorke as well as strongly Ruelle-Takens chaotic.

Let U1 ˆ V1, U2 ˆ V2 be any pair of nonempty open subsets of X ˆ Y . Using locally

eventually ontoness and transitivity of f , we can find an n P N such that

rpf ˆ gqmpU1 ˆ V1qs X pU2 ˆ V2q ‰ H. Hence, the product is topologically transitive.

Note that X ˆ Y is a separable, complete metric space therefore the property of

semiflows that the product being transitive implies that both semiflows are

transitive, and transitivity of pX ˆ Y, f ˆ gq implies point transitivity. Let x P X be

a periodic point of period m and y be a point of Y . Also, consider mN X 2N “ kN

and consider the sequence tn, where tn “ kn for each n P N. Clearly, sequence tn

diverges to infinity and tnpx, yq Ñ px, yq. So, this, together with the fact that the set

of periodic points of f is dense in X implies that pX ˆ Y, f ˆ gq has a dense set of

recurring points. Now, we also know that the product of 2 semiflows is sensitive if

and only if at least one of the factors is sensitive, so, pX ˆ Y, f ˆ gq is sensitive.

Thus, we have proved that pX, fq is strongly Auslander-Yorke and Ruelle-Takens

chaotic but since pY, gq is not sensitive, it is not chaotic in any of these terms.

Now, let Y “ y be a discrete space and g : Y Ñ Y be the identity map. Now,

consider the product cascade pX8, ϕ8q where pX1, ϕ1q “ pX, fq and pXi, ϕiq “ pY, gq
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for rest of the i1s. We can see that the cascade pX8, ϕ8q is both strongly

Auslander-Yorke and strongly Ruelle-Takens chaotic. But for any i ě 2, pXi, ϕiq is

not sensitive and hence not chaotic in either sense.

Example 4.3.6. Consider cascades pX, fq and pY, gq where X “ p0,8q with

subspace topology of real line R.

Y “ Σ2 “ tps0s1s2 . . .q : sj “ 0 or 1 for each j P N0u, the map f : X Ñ X is defined

by fpxq “ 2x and the map g : Y Ñ Y is the left shift map, also, we have that:

s‹
“ p 0 1

loomoon

1 block

00 01 10 11
looooomooooon

2 blocks

000 001 . . .
looooomooooon

3 blocks

. . .q

is an unpredictable point of the cascade pΣ2, f2q. In fact, it is a transitive point as

well. Hence, it is Poincaré chaotic. However, the cascade pX ˆ Y, f ˆ gqis not

Poincaré chaotic since if form some sequence tn diverging to infinity,

tnpx, yq Ñ px, yq, then it will imply that 2tnx Ñ x which is not possible.

Example 4.3.7 ( [53]). Consider the cascade pX, fq where X “ r0, 2s and

f : X Ñ X is the continuous map given by:

fpxq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

2x ` 1, for x P r0, 1{2s

´2x ` 3, for x P r1{2, 1s

´x ` 2, for x P r1, 2s

Observe that in this, pX, fq is clearly Devaney chaotic. Every periodic point is not a

recurrent point and the set of all recurrent points of pX, fq is dense in X. Moreover,

X being a compact separable metric space, we can say that topological transitivity

implies point transitivity. Hence, pX, fq is strongly Auslander-Yorke and Strongly

Ruell-Takens chaotic. However, the extension of this to the factor map

pX ˆ X, f ˆ fq has no topological and hence point transitivity, hence, it is neither
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strongly Auslander-Yorke nor strongly Ruelle-Takens chaotic.

Conclusion

In this chapter we studied various types of chaos which include Devaney’s Chaos,

Li-Yorke Chaos, Wiggins Chaos and more. Theorem 4.1.2 helped us prove that

Devaney’s Chaos is a stronger form of chaos compared to Wiggins Chaos and

Martelli Chaos. We studied various examples from concrete spaces like Tent Map in

Example 4.3.1 and Shift Map in Example 4.3.4 which helped us further our

understanding about Chaos.In Example 4.3.6 and Example 4.3.7 we analysed

Cascades which displayed stronger forms of Chaos like Poincaré Chaos and

Auslander-Yorke Chaos.



Chapter 5

On Product of Dynamical Systems

The product of Dynamical Systems refers to maps on the Cartesian product spaces.

In this chapter, we mainly discuss how the chaotic conditions on dynamical systems

carry over to their products. We also analyse the properties that are satisfied by

these dynamical systems. Then we see what sub-conditions we need to take care of

for the product to satisfy those properties. We demonstrate that if two cascades(or

even one of them)are sensitive, their product is also sensitive. Additionally, we give

several sufficient conditions under which the product of two chaotic cascades(in the

sense of Devaney) are chaotic. Then we discuss finite and infinite product systems.

Li-Yorke Chaos of the product dynamical system p
ś

Xi,
ś

fiq has been studied

when each of the factor dynamical systems pXi, fiq is Li-Yorke chaotic and vice-versa.

5.1 Transitivity

In this section, we show how transitive property of product maps affects the

transitive property of each dynamical system and vice versa.

Theorem 5.1.1 ( [47]). Let pX, fq and pY, gq be cascades. Then The following hold:

1. 1. If the product map f ˆ g is topologically transitive, then f and g are

topologically transitive.

77
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2. 2. If the product map f ˆ g is topologically weakly mixing, then f and g are

topologically weakly mixing

Proof. Let U1, U2 Ă X and V1, V2 Ă Y be non-empty open sets. Then the sets

U “ U1 ˆ Y , V “ U2ˆ Y ,P “ X ˆ V1 and Q “ X ˆ V2 are open in X ˆ Y . Clearly,

NfˆgpU, V q “ NfpU1, U2q and Nfˆg(P, Q) = NgpV1, V2q. Therefore, by the definitions,

We may construct the product map pX ˆ Y, hq by defining hnpx, yq “ phnx, hnyq. We

call pX, hq and pY, hq the factors of the product map and we know that the proof will

hold. However, the converse of this theorem is not true.

Theorem 5.1.2 ( [48]). Let f : X Ñ X and g : Y Ñ Y be two cascades. If g is

topologically mixing, then the following hold.

1. If f is topologically transitive, then so does the product of the dynamical

systems f ˆ g.

2. If f is syndetically transitive, then so does the product of the dynamical

systems f ˆ g.

Proof. For any nonempty open sets W1,W2 Ă X ˆ Y , there exist nonempty open

sets U1, U2 Ă Xand V1, V2 Ă Y with U1 ˆ V1 Ă W1 and U2 ˆ V2 Ă W2. Obviously,

NfˆgpU1 ˆ V1, U2 ˆ V2q “ NfpU1, U2q X NgpV1, V2q.

As g is topologically mixing, there is M ą 0 such that

NgpV1, V2q Ą rM,`8q. Since f is continuous, f´MpU2q is a nonempty and open

subset of X.

1. If f is topologically transitive, NfpU1, f
´MpU2qq ‰ H, which implies that

NfpU1, U2q X NgpV1, V2q ‰ H. Consequently, the product map f ˆ g is

topologically transitive.

2. If f is syndetically transitive, by hypothesis and the definition, there exists

n P N such that
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NfpU1, f
´MpU2qq X rm,m ` ns ‰ H for every m P N , which implies that

NfpU1, U2q X NgpV1, qV2 X rm,m ` n ` M s ‰ H.

Consequently, the product map f ˆ g is syndetically transitive.

Lemma 13. The product of two topologically mixing maps is topologically mixing.

Proof. Let f : X Ñ X and g : Y Ñ Y be topologically mixing maps. Given

W1,W1 Ă X ˆ Y , there exists open sets U1, U2 Ă X and V1, V2 Ă Y . such that

U1 ˆ V2 Ă W1 and U2 ˆ V2 Ă W2. By assumption there exist n1 and n2 such that

fnpU1q X U2 ‰ H for n ě n1 and g
npV1q X V2 ‰ H for n ě n2. For n

ě n0 “ maxn1, n2,we get

clrpf ˆ gq
n
pU1 ˆ V1qs X pU2 ˆ V2q “ rfnpU1q ˆ gnpV1qs X pU2 ˆ V2q (5.1.1)

“ rfnpU1q X U2srg
npV1q X V2s ‰ H (5.1.2)

which means that f ˆ g is topologically mixing.

Theorem 5.1.3. If f ˚
8 (resp., f ˚

N) is transitive, then each factor map fi is transitive.

The converse is not true.

Proof. Given any fixed positive integer i, for any pair of non-empty open subsets

Ai, Bi of Xi, as f
˚
8 is transitive, then there exists some positive integer n such that

˜

pf ˚
8q

n
pAi ˆ

ź

j‰i

Xjq

¸

X

˜

Bi ˆ
ź

j‰i

Xj

¸

“ pfni pAiq X Biq ˆ
ź

j‰i

fnj pXjq ‰ H.

This implies that fni pAiq X Bi ‰ H, so fi is transitive.

5.2 Periodic points of the product systems

First, we consider the finite product systems.
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Proposition 6 ( [46]). For each integer N ě 2,

Per pf ˚
Nq “

N
ź

i“1

Per pfiq .

Theorem 5.2.1 ( [46]). If Perpfiq ‰ H holds for each positive integer i, then

Perpf ˚
8q “

ś8

i“1 Perpfiq if and only if sup tminP pfiq : i P Nu ă `8.

Proof. (ñ) It is obvious that Perpf ˚
8q ‰ H holds since

Perpf ˚
8q “

ś8

i“1 Perpfiq “
ś8

i“1 Perpfiq ‰ H. For any tpiu P Perpf ˚
8q, we have that

there exists some positive integer m such that pf ˚
8qmptpiuq “ tfmi ppiqu “ tpiu, which

implies fmi ppiq “ pi holds for each i P N. So sup tminP pfiq : i P Nu ď m ă `8.

(ð) First, choosing arbitrarily x “ txiu P
ś8

i“1Perpfiq, it is easy to see that for any

A “
ś8

i“1Ai P Npxq satisfying each Ai P Npxiq and ti P N : Ai ‰ Xiu is finite,

p
ś8

i“1 Perpfiqq X A ‰ H. Take tpiu P p
ś8

i“1 Perpfiqq X A and put p˚
i P Perpfiq such

that f
minP pfiq
i pp˚

i q “ p˚
i for each positive integer i. Let j “ maxti P N : Ai ‰ Xiu, then

P := pp1, . . . , pj, p
˚
j`1, p

˚
j`2, . . .q P p

ś8

i“1 PerpfiqqX A.

Let us choose k0 “ maxtmi : 1 ď i ď ju ` suptminP pfiq : i P Nu, where mi is the

period of the point pi under fi. Then,

pf ˚
8q

k0pP q “ pfk01 pp1q, . . . , f
k0
j ppjq, f

k0
j`1pp

˚
j`1q, . . .q “ P P Perpf ˚

8q X A.

Thus,
ś8

i“1 Perpfiq Ď Perpf ˚
8q.

On the other side, it is clear that Perpf ˚
8q Ď

ś8

i“1 Perpfiq.

Hence, Perpf ˚
8q “

ś8

i“1 Perpfiq.

5.3 Sensitivity and Chaos

In this section, we discuss how different types of sensitivities in dynamical systems

results in the sensitivity of their finite product maps and also give some conditions

for their infinite product maps to be sensitive. Then we talk about some
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subconditions that need to be fulfilled for a dynamical system to be Devaney chaotic

and later in this section, we also talk about some other types of chaos.

Theorem 5.3.1 ( [47]). Let X and Y be metric spaces with metrics dx and dy,

respectively, and let f : X Ñ X and g : Y Ñ Y be not-necessarily continuous maps.

Then the following hold:

1. If f or g is syndetically sensitive, then f ˆ g is syndetically sensitive.

2. If f or g is cofinitely sensitive, then f ˆ g is cofinitely sensitive.

3. If f or g is multi-sensitive, then f ˆ g is multi-sensitive.

4. If f ˆ g is ergodically sensitive if and only if f or g is ergodically sensitive.

Proof. Let U Ă X and V Ă Y be nonempty open sets. Then, for any δ ą 0, one can

easily verify that NfˆgpU ˆ V, δq Ą NfpU, δqNgpV, δq. Therefore, parts 1), 2), and 3)

of the theorem are true.

From the above argument, it is easy to see that if f or g is ergodically sensitive, then

so is the product map f ˆ g .

Now we suppose that the product map f ˆ g is ergodically sensitive and that both f

and g are not ergodically sensitive. This means that for any given δ ą 0, there exists

a certain open set U Ă X with dpNfpU, δ{3qq “ 0. Similarly, there exists a certain

open set V Ă Y with dpNgpV, δ{3qq “ 0. It is easy to see that Nfˆg(U ˆ V, δ)

Ă NfpU, 1{3δqNgpV, 1{3δq. This implies that

dpNfˆgpU ˆ V, δqq ď dpNfpU, 1{3δqNgpV, 1{3δqq ď dpNfpU, 1{3q ` dpNgpV, 1{3δqq “ 0.

It is a contradiction.

So, the proof of part 4) is completed.

Thus, the entire proofs are ended.

Theorem 5.3.2 ( [56]). f8 is sensitive if and only if there exists a positive integer k

such that fk is sensitive.
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Proof. Let f8 be sensitive with constant c. We have to show that there exists a

positive integer k such that fk is sensitive. Suppose to the contrary, i.e., that each fi

is non-sensitive. Then for each i there exists a nonempty open subset Ui of Xi such

that dipf
n
i pxq, fni pyqq ă c

2 , for all x, y P Ui and n P N. Let us take a fixed positive

integer n0 such that
ř8

n“n0

1
2n ă c

22 . Note that A “
śn0

i“1 Ui ˆ
ś8

i“n0`1Xi is a

nonempty open subset of X8. Now,for any pair of elements xi, yi P A and n P N, we

have

dpfn8pxiq, f
n
8ppyiqqq “

n0
ÿ

i“1

1

2i
dipf

n
i pxiq, f

n
i pyiqq

ă

n0
ÿ

i“1

1

2i
p1 ` dipf

n
i pxiq, f

n
i pyiqqq

ă

n0
ÿ

i“1

1

2i
c

2

ă
c

2

˜

1 `

8
ÿ

i“n0`1

1

2i

¸

ă c,

a contradiction to our hypothesis. Hence, there exists a positive integer k such that

fk is sensitive.

Conversely, let fk be sensitive with sensitivity constant c for some fixed positive

integer k. Let x “ pxiq P X8 and A be an open neighborhood of pxiq. Note that

pkpAq is an open neighborhood of xk in Xk, where pk :
ś8

i“1Xi Ñ Xk is the kth

projection map. Now, since fk is sensitive, there exists a point y P pkpAq and n0 P N

such that dkpfn0

k pxkq, fn0

k pyqq ą c. Let us choose z “ pziq P X8, where zi “ xi when

i ‰ k and zk “ y. Clearly, z is an element of A and

dpfn0
8 pxq, fn0

8 pzqq

“
1

2k
dkpfn0

k pxkq, fn0

k pyqq

ą
1

2k
p1 ` dkpfn0

k pxkq, fn0

k pyqqq

ą
1

2k
c

1 ` c
.
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Hence, φ8 is sensitive with constant 1
2k

c
1`c .

Theorem 5.3.3 ( [51]). pX8, f8q is multisensitive if and only if there exists a

positive integer k such that pXk, fkq is multisensitive.

Proof. Let pX8, f8q be multisensitive with constant c. Suppose for each i,

pX, fiq is not multisensitive.

Let us take a fixed positive integer n0 such that

8
ÿ

i“n0`1

1

2i
ă
c

2
.

Since each factor-map is not multisensitive, corresponding to each pX, fiq,

1 ď i ď n0, there exist nonempty open subsets U1,i, U2,i, . . . , Uki,i of Xi such that

ki
č

j“1

DpUj,i,
c

2
q “ H,

where k1, k2, . . . , kn0
are fixed positive integers. Now, consider open subsets,

Apj1, j2, . . . , jn0
q “ Uj1,1 ˆ Uj2,2 ˆ ¨ ¨ ¨ ˆ Ujn0 ,n0

ˆ

8
ź

i“n0`1

Xi,

where 1 ď ji ď ki and 1 ď i ď n0 of X8. By multisensitivity of pX8, f8q, we get a

k0 P N such that

diampfk08 pApj1, j2, . . . , jn0
qqq ą c,

for 1 ď ji ď ki and 1 ď i ď n0.

Now, as
Şki

j“1DpUj,i,
c
2q “ H for each 1 ď i ď n0, corresponding to k0 there exists an

open subset U i
k0,i

of Xi, where k0i P t1, 2, . . . , kiu such that diampfk0i pU i
k0,i

qq ă c
2 , for

1 ď i ď n0. Consider the nonempty open subset

B “ Uk01,1 ˆ Uk02,2 ˆ ¨ ¨ ¨ ˆ Uk0n0 ,n0
ˆ

8
ź

i“n0`1

Xi
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of X8. Then for any pxiq, pyiq P B we have

dpfk08 pxiq, f
k0
8 pyiqq

ă

n0
ÿ

i“1

1

2i
dipf

k0
i pxiq, f

k0
i pyiqq

ă

n0
ÿ

i“1

1

2i

´

1 ` dipf
k0
i pxiq, f

k0
i pyiqq

¯

ă
c

2

˜

1 `
c

2
`

8
ÿ

i“n0`1

1

2i

¸

ă c,

a contradiction to the earlier inequality. Hence, there must exist a positive integer k

such that pXk, fkq is multisensitive.

Conversely, let pXk, fkq be multisensitive with constant c for some fixed positive

integer k. Again, let A1, A2, . . . , An be finitely many nonempty open subsets of X8.

Note that for 1 ď i ď n, pkpAiq is a nonempty open subset of Xk, where

pk : X8 Ñ Xk is the kth projection map. Since pXk, fkq is multisensitive, there exists

a k0 P N which lies in
Şn

i“1DppkpAiq, cq. Now we claim that k0 P DpAi,
c

2kp1`cqq, for

1 ď i ď n. Since for each 1 ď i ď n, k0 P DppkpAiq, cq, there exist xi,k and yi,k in

pkpAiq such that dkpfk0k pxi,kq, fk0k pyi,kqq ą c. For any fixed 1 ď i ď n, as Ai is

nonempty let pxjq be an element of Ai. Taking two points pyjq and pzjq of Ai, where

yj “ zj “ xj when j ‰ k, yk “ xi,k, and zk “ yi,k, we get

dpfk08 pyjq, f
k0
8 pzjqq

“
1

2k
dkpfk0k pxi,kq, fk0k pyi,kqq

ă
1

2k

´

1 ` dkpfk0k pxi,kq, fk0k pyi,kqq

¯

ą
1

2k

c

1 ` c
.

Therefore, t0 P
Şn

i“1DpAi,
c

2kp1`cqq. Hence, pX8, f8q is multisensitive with constant

c
2kp1`cq .
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Theorem 5.3.4 ( [53]). pX8, f8q is ergodically sensitive if and only if there exists a

positive integer k such that pXk, fkq is ergodically sensitive.

Proof. Let pX8, f8q be ergodically sensitive with constant c. Suppose for each i ‰ k,

pX, fiq is not ergodically sensitive. Choose a fixed positive integer n such that
ř8

i“n
1
2i ă c

2 . Since each factor-map is not ergodically sensitive, corresponding to each

pX, fiq, 1 ď i ď n, there exists a nonempty open subset Ui of Xi such that

dDpUi,
c
2q “ 0. As A “

śn
i“1 Ui ˆ

ś8

i“n`1Xi is a nonempty open subset of X8 and

pX8, f8q is ergodically sensitive, dDpA, cq ą 0. Now we show that

D

˜

n
ź

i“1

Ui ˆ

8
ź

i“n`1

Xi, c

¸

Ď

n
č

i“1

D
´

Ui,
c

2

¯

.

Let n0 P DpA, cq, then there exist pxiq, pyiq P A such that dpfn0
8 pxiq, f

n0
8 pyiqq ą c, i.e.,

n
ÿ

i“1

1

2i
dipf

n0

i pxiq, f
n0

i pyiqq `

8
ÿ

i“n`1

1

2i
ą c.

Since
ř8

i“n
1
2i ă c

2 ,
řn

i“1
1
2idipf

n0

i p, xiq, f
n0

i p, yiqq `
ř8

i“n`1
1
2i ą c

2 , which implies there

exists a j P t1, 2, . . . , nu such that djpf
n0

j pxjq, f
n0

j pyjqq ą c
2 , for if

dipf
n0

i pxiq, f
n0

i pyiqq ď c
2 for each i P t1, 2, . . . , nu, then

n
ÿ

i“1

1

2i
dipf

n0

i pxiq, f
n0

i pyiqq `

8
ÿ

i“n`1

1

2i
ď
c

2
`
c

2
ă c,

a contradiction. Therefore, n P DpUj,
c
2q and (6) holds true. Consequently,

dDpA, cq ď dD

˜

n
č

i“1

D
´

Ui,
c

2

¯

¸

“ 0

which is a contradiction. Hence, there exists a positive integer k such that pXk, fkq is

ergodically sensitive.

Conversely, let pXk, fkq be ergodically sensitive with constant c for some fixed

positive integer k. Let A be a nonempty open subset of X8. Then pkpAq is a
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nonempty open subset of Xk. Ergodic sensitivity of pXk, fkq implies that

dDppkpAq, cq ą 0. Now, we show that

DppkpAq, cq Ď D

ˆ

A,
c

2kp1 ` cq

˙

.

Let n0 be an element of DppkpAq, cq. Then dkpfn0

k pyq, fn0

k pzqq ą c for some

y, z P pkpAq. As A is nonempty, there exists pxiq in A. Taking two points pyiq and

pziq of A, where yi “ zi “ xi when i ‰ k, yk “ y and zk “ z, we get that

dpfn0
8 pyiq, f

n0
8 pziqq ą

1

2k

c

1 ` c
.

Therefore, (7) holds true. Further,

dD

ˆ

A,
c

2kp1 ` cq

˙

ě dD pDppkpAq, cqq ą 0.

Hence, pX8, f8q is ergodically sensitive with constant c
2kp1`cq .

In the following example, we show that pX8, f8q is sensitive, multisensitive, and

ergodically sensitive, but no pXi, fiq except pX1, f1q is sensitive, multisensitive, and

ergodically sensitive.

Example 5.3.1. Consider the cascade pX8, f8q, where X1 “ r0,8q and Xi “ S1 for

all i ‰ 1 with usual topologies. We are taking the map f8 to be defined by

fn8pxiq “ p2nx1, e
2πinx2, e

2πinx3, . . .q. Let c ą 0 be a fixed real number. Further, let U

be a nonempty open subset of X1. Taking any two distinct points p, q P U , we can

certainly find a positive natural number n0 such that 2k|p´ q| ą c, for all k P rn0,8q.

Clearly, dDprn0,8qq ą 0 so pX1, f1q is ergodically sensitive. Again, let k be any fixed

natural number and U1, U2, . . . , Uk be nonempty open subsets of X1, then there

exists a positive natural number n1 such that
Şk

i“1DpUi, cq Ě rn1,8q. Thus pX1, f1q

is multisensitive as well. we know that pX8, f8q is sensitive, multisensitive, and

ergodically sensitive. Note that for all i ‰ 1, dipxi, yiq “ dipf
npxiq, f

npyiqq for all
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xi, yi P Xi and n P N. Hence, pXi, fiq is not sensitive for all i ‰ 1

The following example shows that the product of two chaotic maps need not be

chaotic.

Example 5.3.2. Let f : r0, 2s Ñ r0, 2s be defined as follows:

fpxq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

2x ` 1 for 0 ď x ď 1
2 ,

´2x ` 3 for 1
2 ď x ď 1,

´x ` 2 for 1 ď x ď 2.

Then, the map f is chaotic, but f ˆ f : r0, 2s ˆ r0, 2s Ñ r0, 2s ˆ r0, 2s is not chaotic.

Sub-conditions of chaos

Lemma 14 ( [56]). Let X and Y be metric spaces with metrics d1 and d2 ,

respectively, f : X Ñ X and g : Y Ñ Y be not-necessarily continuous maps.

i) If f or g is sensitively dependent on initial conditions, then f ˆ g : X ˆY Ñ Xˆ Y

is sensitively dependent on initial conditions.

ii) If f ˆg : X ˆ Y Ñ X ˆ Y is sensitively dependent on initial conditions, then at

least one of f or g is sensitively dependent on initial conditions.

Proof. i) Let us assume f is sensitively dependent on initial conditions. Then we will

show that the same is true for f ˆ g .

Let p “ px, yq P X ˆ Y be any point and W any neighborhood of p. Then there exist

open neighborhoods U of xinX and V of y in such that U ˆ V Ă W . As f is

sensitively dependent on initial conditions, there exists ϵ ą 0 such that for a certain

x1 P U and an integer n ą 0 the inequality d1pf
npxq, fnpx1qq ą ϵ holds.Then for any
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y1 P V, p1 “ px1, y1q belongs to W and

dppf ˆ gqnppq, pf ˆ gqnpp1qq “ d1pf
npxq, fnpx1qq ` `d2pg

npyq, gnpy1qq

ě d1pf
npxq, fnpx1qq ą ϵ.

This means that f ˆ g is sensitively dependent on initial conditions.

ii) Let us assume that both f and g are not sensitively dependent on initial

conditions. This means that,given any ϵ ą 0 there exists x P X such that for a

certain open set U Ă X containing x, the inequality

d1pf
n
pxq, fnpx1

qq ą ϵ{2

holds for every x1 P U and positive integer n. Similarly, there exists y P Y such that

for a certain open set V Ă Y containing y , the inequality

d1pg
n
pxq, gnpx1

qq ą ϵ{2

holds for every y1 P V and positive integer n. Then we get

dppf ˆ gqnppq, pf ˆ gqnpp1
qq “ d1pf

n
pxq, fnpx1

qq ` `d2pg
n
pyq, gnpy1

qq ă ϵ

for px1, y1q P U ˆ V . This means that f ˆ g is not sensitively dependent on initial

conditions, contradicting the hypothesis.

Lemma 15 ( [56]). Let X and Y be metric spaces with metrics d1 and d2

respectively, f : X Ñ X and g : Y Ñ Y (not-necessarily continuous) maps. The set of

periodic points of f ˆ g is dense in X ˆ Y if and only if, for both of f and g the sets

of periodic points in X and Y are dense (in X, resp. Y )

Proof. Let us assume that the set of periodic points of f is dense in X and the set of

periodic points of g is dense in Y . Let us see that the set of periodic points of f ˆ g

is dense in X ˆ Y . Let W Ă X ˆ Y be any non-empty open set. Then there exist
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non-empty open sets U Ă X and V Ă Y with U ˆ V Ă W . By assumption, there

exists a point x P U such that fnpxq “ x with n ą 0. Similarly, there exists y P V

such that gmpyq “ y with m ą 0. For p “ px, yq Ă W and k “ mn we get

pf ˆ gq
k
ppq “ pf ˆ gq

k
px, yq “ pfkpxq, gkpyqq “ px, yq

This means that W contains a periodic point and thus the set of periodic points of

f ˆ g is dense in X ˆ Y .

Conversely, let U Ă X and V Ă Y be non-empty open subsets. Then U ˆ V is a

non-empty open subset of X ˆ Y . As the set of the periodic points of f ˆ g is dense

in X ˆ Y , there exists a point p “ px, yq P U ˆ V such that

pf ˆ gqnpx, yq “ pfnpxq, gnpyqq “ px, yq for some n. From the last equality we obtain

fnpxq “ x for x P U and gnpyq “ y for y P Y .

By Lemma 2 and Lemma 3, sensitive dependence on initial conditions and denseness

of periodic points carry over from factors to products.

Theorem 5.3.5 ( [56]). Let f : X Ñ X and g : Y Ñ Y be not-necessarily

continuous, chaotic, and topologically mixing maps on the metric spaces X and Y .

Then f ˆ g : X ˆ Y Ñ X ˆ Y is chaotic.

Proof. The map f ˆ g is said to be chaotic, if these three conditions of Devaney are

satisfied :

1. Sensitively dependent on initial conditions.

2. It has dense periodic points.

3. It is topologically mixing.

To show : The map f ˆ g is sensitively dependent on initial conditions.

Let us assume f is sensitively dependent on initial conditions. Then we will show

that the same is true for f ˆ g.
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Let p “ px, yq P X ˆ Y be any point and W any neighborhood of p. Then there exist

open neighborhoods U of x1 P X and V of y1 P Y such that U ˆ V Ă W . As f is

sensitively dependent on initial conditions, there exists ε ą 0 such that for a certain

x P U and an integer n ą 0 the inequality d1pfnpxq, fnpx1qq ą ε holds. Then for any

y1 P V , p1 “ px1, y1q belongs to W and

dppfˆgqnppq, pfˆgqnpp1
qq “ d1pfnpxq, fnpx1

qq`d2pgnpyq, gnpy1
qq ě d1pfnpxq, fnpx1

qq ą ε

This means that f ˆ g is sensitively dependent on initial conditions.

To show : The map f ˆ g has dense periodic points.

Let us assume that the set of periodic points of f is dense in X and the set of

periodic points of g is dense in Y . Let us see that the set of periodic points of f ˆ g

is dense in X ˆ Y . Let W Ă X ˆ Y be any non-empty open set. Then there exist

non-empty open sets U Ă X and V Ă Y with U ˆ V Ă W . By assumption, there

exists a point x P U such that fnpxq “ x with n ą 0. Similarly, there exists y P V

such that gmpyq “ y with m ą 0. For p “ px, yq P W and k “ mn we get,

pf ˆ gqkppq “ pf ˆ gqkpx, yq “ pfkpxq, gkpyqq “ px, yq

This means that W contains a periodic point and thus the set of periodic points of

f ˆ g is dense in X ˆ Y .

To Show : The map f ˆ g is topologically mixing.

Let f : X Ñ X and g : Y Ñ Y be topologically mixing maps. Given

W1,W2 Ă X ˆ Y , there exists open sets U1, U2 Ă X and V1, V2 Ă Y , such that,

U1 ˆ V that fnpU1q X U2 “ H for n ě n1 and gnpV1q X V2 “ H for n ě n2. For

n ě n0 “ maxtn1, n2u we get,

rpf ˆ gqnpU1 ˆ V1qs X pU2 ˆ V2q “ rfnpU1q ˆ gnpV1qs X pU2 ˆ V2q
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“ rfnpU1q X U2s ˆ rgnpV1q ˆ V2s “ H

which means that f ˆ g is topologically mixing, hence topologically transitive.

Thus all three conditions of Devaney chaos are satisfied.

Theorem 5.3.6. Let X be a metric space, f : X Ñ X a continuous and chaotic

map; g : Y Ñ Y a not-necessarily continuous, chaotic, and topologically mixing map

on the metric space Y. Then f ˆ g : X ˆ Y Ñ X ˆ Y is chaotic.

Proof. It is enough to show that f ˆ g is topologically transitive. It is obviously

enough to show this for open sets of the form U ˆ V . So, let be given two sets U1 ˆ

V1 and U2 ˆ V2 with U1, U2 open in X and V1, V2 open in Y . As g is topologically

mixing, there exists n0 ą 0 with gnpV1q X V2 ‰ ϕ for all n ě n0. On the other hand,

there exists a periodic point x P U1 whose orbit enters U2. Thus, if we denote the

period of x by p, there exists k with 0 ď k ă p and fkpxq P U2. This implies

fmp ` kpxq P U2 for any positive integer m. Now choose m such that

l “ mp` k ě n0. Then we have g1pV1q X V2 ‰ H and there exists a point y P V1 with

g1pyq P V2 . Now, for the point px, yq P U1 ˆ V1 we get pf ˆ gqlpx, yq P U2 ˆ V2. Hence

f ˆ g is topologically transitive.

Example 5.3.3. Some of the best-known chaotic maps are:

1. The logistic map: f : [0, 1] Ñ [0, 1], f(x) = 4x(1 - x)

2. The map doubling the circle: D : S1 Ñ S1 D(θ)=2θ

3. The baker map: B : [0, 1] Ñ [0, 1], B(x) =

$

’

&

’

%

2x , if 0 ď x ă 1{2

2x ´ 1 , if 1{2 ď x ď 1.

Theorem 5.3.7. [45] If f ‹
8 or (resp. f ‹

N) is Devaney chaotic, then each factor map

fi is also Devaney chaotic. However, the converse does not hold

[46]. For any fixed positive integer i, it follows from definition of Devaney Chaos,

that under f ‹
8, for any pair of not empty subsets Ai, Bi of Xi, there exists some
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integer n ą 0, such that:

pf ‹
8q

n

˜

Ai ˆ
ź

j‰i

Xj

¸

X

˜

Bi ˆ
ź

j‰i

Xj

¸

“ pfni pAiq X pBiqq ˆ
ź

j‰i

fnj pXjq ‰ H

So, fni pAiq X Bi ‰ H, this implies that fi is transitive. Clearly, Perpfiq “ Xi as
ś8

i“1Xi “ Perpf ‹
8q Ă

ś8

i“1 Perpfiq (f ‹
8 is Devaney chaotic). Thus, for each i , fi is

topologically transitive and has denseness of periodic points, by Theorem 4.1, fi is

Devaney chaotic. A similar argument can be given when we take a finite family of

dynamical systems.

Theorem 5.3.8 ( [46]). Let Xi “ r0, 1s for each i P N. Then f ‹
8 (resp. f ‹

N) is

Devaney Chaotic if and only if f ‹
8 (resp.f ‹

N) is transitive.

Proof. (ð) Since f ‹
8 is transitive, and by the above theorem, we know that for each

i, fi is transitive as well as chaotic in the sense of Devaney. Thus,
ś8

i“1Xi “
ś8

i“1 Perpfiq “
ś8

i“1 Perpfiq Also, we know that

suptminP pfiq : i P Nu “ 1 ă infty holds since each fi has a fixed point. Also by

Definition 1.4.3, Perpf ‹
8q “

ś8

i“1 Perpfiq “
ś8

i“1Xi.

Thus, f ‹
8 has dense periodic points and is chaotic by Theorem 4.1.

(ñ) Now, this proof holds trivially since any chaotic map is also transitive. Our

proof is complete.

Theorem 5.3.9 ( [48]). Let f : X Ñ X be a continuous chaotic cascade on the

metric space X and g : Y Ñ Y be another cascade on the metric space Y . If g is

topologically mixing and the set of all periodic points of f ˆ g is dense in X ˆ Y ,

then f ˆ g : X ˆ Y Ñ X ˆ Y is chaotic.

Proof. Now, in order to prove this, we will prove transitivity as well as sensitivity of

f ˆ g.

Transitivity: For any nonempty sets W1,W2 Ă X ˆ Y , there exists nonempty subsets
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U1, U2 Ă X and V1, V2 Ă Y with U1 ˆ V1 Ă W1 and U2 ˆ V2 Ă W2 and clearly

NfˆgpU1 ˆ V1, U2 ˆ V2q “ NfpU1, U2q
č

NgpV1, V2q

where NfpU, V q is as defined in Definition 1.3.9. As g is topologically mixing , there

is M ą 0 such that

rM,8q Ă NgpV1, V2q

Since f is continuous, f´MpU2q is a nonempty and open subset of X.

And if f is topologically transitive, by definition, there exists an n P N such that

NfpU1, f
´Mn

pU2qq ‰ H

which implies that

NfpU1, U2q
č

NgpV1, V2q ‰ H

Thus, the product semi-flow f ˆ g is topologically transitive.

Sensitivity: Assume, on the contrary, that both f and g are not sensitive. This

means that for any ϵ ą 0, there exists an x P X such that for a particular open set

U Ă X with x P U , dXpfnpxq, fnpx1qq ď ϵ
2 , for any x

1 P U and any n P N. Similarly,

there is a y P Y such that for a certain open set V Ă Y with y P V ,

dY pgnpyq, gnpyqq ď ϵ
2 for any y1 P V and any n P N. So, NfˆgpU ˆ V, ϵq “ H. Thus,

g ˆ g is not sensitive, which is a contradiction to our hypothesis of it being sensitive.

Hence proved that f ˆ g is chaotic.

Theorem 5.3.10 ( [48]). Let X be a metric space and assume that f : X Ñ X is a

continuous cascade with Touhey property. Let g : Y Ñ Y be a non-necessarily

continuous, chaotic, and topologically mixing cascade on the metric space Y . If the

set of all periodic points of f ˆ g is dense in X ˆ Y , then f ˆ g : X ˆ Y Ñ X ˆ Y is

chaotic.
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Proof. By definition, it is enough to show that f ˆ g : X ˆ Y Ñ X ˆ Y is

topologically transitive. Let U1, U2 Ă X and V1, V2 Ă V be nonempty open sets.

Since g is topologically mixing, there n0 P N with gnpV1q
Ş

V2 ‰ H and all n ě n0.

By definition, there exists a periodic point x P U1 whose orbit U2. let M be the

period of x. Then there exists M 1 with 0 ď M 1 ă M and fM
1

pxq P U2. This means

that fkM`M 1

pxq P U2 for any integer k ą 0. Choose k ą 0 such that

M2 “ kM ` M 1 ě n0. Therefore, there exists a point y P V1 with g
L2

pyq P V2.

Consequently, px, yq P pf ˆ gqM
2

pU1 ˆ V1q X pU2 ˆ V2q, which implies that

f ˆ g : X ˆ Y Ñ X ˆ Y is topologically transitive. Hence, the proof is complete.

Theorem 5.3.11 ( [53]). Let pX, fq and pY, gq be 2 spaces with their corresponding

maps, If pX ˆ Y, f ˆ gq is Poincaré chaotic then at least one of pX, fq;pY, gq is

Poincaré chaotic.

Proof. Let px, yq be an unpredictable transitive point in the semiflow pX ˆ Y, f ˆ gq

with unpredictability constant c. Clearly, x and y are transitive points of semiflows

pX, fq and pY, gq respectively. By definition of unpredictable points, there exist

sequences tn and sn, both of which diverge to infinity, such that tnpx, yq Ñ px, yq and

drsnpx, yq.psn ` tnqpx, yqs ě c for each n P N which implies that tnx Ñ x and tny Ñ y.

We claim that at least one of x, y s unpredictable points with unpredictability

constant c{2. Now, consider the following cases:

Case 1. If d1rsnx, psn ` tnqxs ě c{2 for each n P N or d2rsnx, psn ` tnqxs ě c{2 for

each n P N, our proof is complete.

Case 2. If tn P N : d1rsnx, psn ` tnqxs ă c{2u is nonempty but finite, say

n1, n2, . . . , nk. Choose a fixed natural number n0 such that n0 ą ni for each

i P t1, 2, . . . , ku. Now, consider 2 sequences un, vn where un “ sn, vn “ tn for all

n R n1, n2, . . . , nk and un “ sn, vn “ tn for each n P tn1, n2, . . . , nju. Clearly, we can

verify that un and vn both diverge to infinity such that vnx Ñ x and

d1runx, psn ` tnqxs ě c{2 for each n P N. Thus, x is an unpredictable point and hence
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our claim is proved.

Case 3. If A “ tn P N : d1rsnx, psn ` tnqxs ě c{2u is infinite then we can write A as

nq1, n2, hdots where nk ă nk`1 for all k ě 1. Note that the sequences snkkPN, tnkkPN,

both diverge to infinity and tnk
y Ñ y. Also, d2rsnk

y, psnk
` tnk

qys ą c{2 for each k P N

because if d2rsnk
y, psnk

` tnk
qys ď c{2 for some k1 P N, then

drsn1
k
px, yq, psn1

k
`tn1

k
qpx, yqs “ d1rsn1

k
x, psn1

k
`tn1

k
qxs`d2rsn1

k
y, psn1

k
`tn1

k
qys ă c{2`c{2 “ c

which is a contradiction to the unpredictability of px, yq. Hence, y is an unpredictable

point with unpredictability constant c{2 and hence our claim is proved.

Theorem 5.3.12 ( [53]). If pX8, f8q is strongly Auslander-Yorke chaotic then there

exists a positive integer k such that pXk, fkq is strongly Auslander-Yorke chaotic.

Proof. Now, since pX8, f8q is topologically transitive, we know by factor maps that

the factors are also topologically transitive, so, for all i, pXi, fiq is topologically

transitive. Similarly, using the properties, sensitivity of pX8, f8q implies sensitivity

of at least one of the factors, say pXk, fkq.

Now, we prove that pXk, fkq has a dense set of recurrent points. Let Uk be a

nonempty open subset of Xk. Since pX8, f8q has a dense set of recurrent points,

there exists a recurrent point pxiq P
ś8

i“1 Vi where Vi “ Xi for all i ‰ k and Vk “ Uk.

By definition of a recurrent point, there exists an increasing sequence ttnu diverging

to infinity such that tnpxiq Ñ pxiq which implies that tnxk Ñ xk and hence xk P Uk is

a recurrent point. Thus, pXk, fkq has a dense set of recurrent points. Thus, pXk, fkq

is strongly Auslander-Yorke chaotic.

Theorem 5.3.13 ( [53]). If pX8, f8q is strongly Ruelle-Takens chaotic then there

exists a positive integer k such that pXk, fkq is strongly Ruelle-Takens chaotic.

Proof. Let pxiq be a transitive point of the semiflow pX8, f8q. For any positive

integer j, let Uj be a nonempty open subset of Xj. Since pxiq is a transitive point of
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the semiflow pX8, f8q, there exists an n P N such that tnpxiq P
ś8

i“1 Vi where Vi “ Xi

for all i ‰ j and Vj “ Uj. This implies that tnxj P Uj. Thus, xj is a transitive point

of the semiflow pXj, fjq. Now, from the above proof, we can say that there exists a

positive integer k such that pXk, fkq has a dense set of recurring points and hence

pXk, fkq is strongly Ruelle-Takens chaotic.

We know from Example 2 that the converse is not true.

Now, it is naturally asked: What is the necessary and sufficient condition in

Theorem 3.4.4. We shall give a partial answer to this question by using the following

two lemmas:

Lemma 16 ( [53]). f ˚
N is mixing if and only if fi is mixing for each 1 ď i ď N .

Proof. (ð) It holds trivially.

(ñ) Given any fixed 1 ď i ď N , for any pair of non-empty open subsets Ai, Bi Ă Xi,

since f ˚
N is mixing, we have that there exists some positive integer m such that for

any n ą m,

˜

pf ˚
Nq

n
pAi ˆ

ź

j‰i

Xjq

¸

X

˜

pBi ˆ
ź

j‰i

Xjq

¸

“ pfni pAiq X Biq ˆ
ź

j‰i

fnj pXjq ‰ H.

This implies that fni pAiq X Bi ‰ H, i.e., fi is mixing.

Lemma 17 ( [45]). f ˚
8 is mixing if and only if the factor map fi is mixing for each

i P N.

Proof. (ð) For any pair of non-empty open sets A,B Ă Xp8q, according to the

construction of open sets of Xp8q, it follows that there exists a positive integer n˚

and non-empty open subsets Ai, Bi Ă Xi such that

n˚
ź

i“1

Ai ˆ
ź

iąn˚

Xi Ă A and
n˚
ź

i“1

Bi ˆ
ź

iąn˚

Xi Ă B.

For each integer i ą 0, since fi is mixing, then there exists some positive integer Ni
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such that fni pAiq X Bi ‰ H for each n ą Ni. Put N
˚ “ maxtNi : 1 ď i ď n˚u. It is

not difficult to check that

pf ˚
8q

n
pAq X B Ą

˜

n˚
ź

i“1

pfni pAiq X Biq

¸

ˆ
ź

iąn˚

fni pXiq ‰ H

holds for each n ě N ˚. So f ˚
8 is mixing.

(ñ) Similarly to the proof of Lemma 4, it holds trivially.

Theorem 5.3.14 ( [45]). Assume that pX, dq is a compact metric space. If the

system pX, fq is chaotic in the sense of Devaney, then Perpfq is infinite.

Proof. Clearly, the set X is infinite. Suppose that Perpfq is finite. Without loss of

generality, we may assume P pfq “ tn1, n2, . . . , nku. It is easy to see that

fn1¨n2¨...¨nkppq “ p holds for any p P Perpfq.

Now we assert that for any x P X, fn1¨n2¨...¨nkpxq “ x, i.e., Perpfq “ X. Indeed,

choosing arbitrarily x P X, it follows from Perpfq “ X that there exists a sequence

tpiu
8
i“1 Ă Perpfq such that limnÑ8 dppn, xq “ 0. Since fn1¨n2¨...¨nk is uniformly

continuous, then we have

lim
nÑ8

dppn, f
n1¨n2¨...¨nkpxqq “ lim

nÑ8
dpfn1¨n2¨...¨nkppnq, fn1¨n2¨...¨nkpxqq “ 0.

This implies that fn1¨n2¨...¨nkpxq “ limnÑ8 pn “ x.

We know from the transitivity of f that there exists x0 P X “ Perpfq such that

orbfpx0q “ X, so X is finite, which is a contradiction.

Theorem 5.3.15 ( [55]). The product dynamical system pX ˆ Y, f ˆ gq is Li-Yorke

chaotic if one of the dynamical systems pX, fq or pY, gq is Li-Yorke chaotic.

Proof. Suppose pX, fq is Li-Yorke chaotic. By the definition of Li-Yorke chaos,

pX, fq has an uncountable scramble set S. Let y P Y be any point. Consider the

subset S ˆ tyu of X ˆ Y . It is obvious that S ˆ tyu is uncountable. Let u “ px, yq
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and v “ pz, yq be two points of S ˆ tyu. dpu, vq “ d1px, zq ` d2py, yq “ d1px, zq. Since

pX, fq is Li-Yorke chaotic, we have limnÑ8 d1pf
npxq, fnpzqq “ 0, and consequently,

lim
nÑ8

dpf ˆ gnpx, yq, f ˆ gnpz, yqq “ lim
nÑ8

rd1pf
n
pxq, fnpzqq ` d2pg

n
pyq, gnpyqqs “ 0.

Also, lim supnÑ8 d1pf
npxq, fnpzqq ą 0, therefore,

lim sup
nÑ8

dpf ˆ gnpx, yq, f ˆ gnpz, yqq “ lim sup
nÑ8

rd1pf
n
pxq, fnpzqq ` d2pg

n
pyq, gnpyqqs ą 0.

Thus, S ˆ tyu is an uncountable scramble set, therefore, pX ˆ Y, f ˆ gq is Li-Yorke

chaotic.

Theorem 5.3.16 ( [55]). The product dynamical system pX ˆ Y, f ˆ gq has positive

topological entropy, then one of the dynamical systems pX, fq or pY, gq is Li-Yorke

chaotic.

Proof. We know that the topological entropy is non-negative. Given that

hpf ˆ gq ą 0, and since hpf ˆ gq “ hpfq ` hpgq, we have either hpfq ą 0 or hpgq ą 0,

or both hpfq and hpgq are greater than 0. Hence, at least one of the dynamical

systems is Li-Yorke chaotic.

We also know that if A ˆ B is uncountable, then at least one of the sets A or B is

uncountable. Suppose A ˆ B is an uncountable scramble subset of X ˆ Y . For

px1, y1q, px2, y2q P A ˆ B, we have

lim
nÑ8

dpf ˆ gnppx1, y1q, px2, y2qqq “ 0

ñ 0 ď lim
nÑ8

d1pf
n
px1q, f

n
px2qq ` lim

nÑ8
d2pg

n
py1q, g

n
py2qq

ñ lim
nÑ8

d1pf
n
px1q, f

n
px2qq “ 0 and lim

nÑ8
d2pg

n
py1q, g

n
py2qq “ 0.

Also,

lim sup
nÑ8

dpf ˆ gnpx1, y1q, f ˆ gnpx2, y2qq
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ñ either lim supnÑ8 d1pf
npx1q, f

npx2qq ą 0 or lim supnÑ8 d2pg
npy1q, g

npy2qq ą

0 or both ą 0.

This proves that at least one of the sets A or B is an uncountable scramble set.

Conclusion

In this chapter we studied various properties and results concerning product of

dynamical systems. In Theorem 5.1.2 and Theorem 5.1.3 we analysed how

properties from dynamical systems are carried over to their product. In Theorem

5.3.1 we proved that some forms of sensitivity can be inherited by the product

dynamical system from its constituent dynamical systems.We also listed classical

examples of chaotic maps in Example 5.3.3. Additionally, we proved various

sufficient conditions like Theorem 5.3.8 and Theorem 5.3.9 under which, the

product of two chaotic cascades is chaotic.
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