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Abstract

In this project, we study the applications of unified method to the nonlinear evolution

equations which represent some of the important physical phenomenon. Partial differ-

ential equations (PDEs) can be regarded as evolution equations on an infinite dimen-

sional state space. So, our primary objective in this project is to identify the symmetries

of some nonlinear partial differential equations in order to obtain solitary wave solutions.

Furthermore, to discuss the dynamic behavior of obtained solution for the equations

under consideration. The investigations carried out in this dissertation are confined

to the applications of method for three nonlinear partial differential equations such as

the (1+1)-dimension Lonngren Equation, the (1+1)-dimensional Burger’s Equation, the

(1+1)-dimensional longitudinal wave equation,

Our project comprises four chapters. In Chapter 1, some important features of a unified

method reviewed which are of great importance to the work dealt in Chapters 2–4. It also

presents the methodologies utilized in the dissertation and a brief account of the related

studies made by various authors in this field of research. The chapter-wise description

is as follows:

Chapter 2, 3, and 4 deals with the study of we employ the unified method to de-

rive solitary wave solutions for the the (1+1)-dimension Lonngren Equation, the (1+1)-

dimensional Burger’s Equation, the (1+1)-dimensional longitudinal wave equation, and

the (1+1)-dimensions longitudinal wave equation, presenting a systematic approach to

reveal the underlying dynamics. By incorporating mathematical analysis and numerical

simulations, we investigate the behaviors and properties of these solitary wave solutions

in various fields of science. These obtained solutions shed light on the fundamental

mechanisms governing solitary waves of the longitudinal wave equation, contributing to

a deeper understanding of nonlinear wave phenomena. We present effective visualiza-

tions of the dynamical wave structures necessary in the obtained solutions to improve

our comprehensive understanding. We visualize their significance using various graphs,
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such as 3D, 2D, and contour plots to demonstrate these obtained solutions. Conse-

quently, numerous types of wave profiles, including singular periodic, multi-periodic,

bell-shaped, traveling wave, and multi-bell-shaped wave profiles were found. In sum-

mary, this work presents a comprehensive study of solitary wave solutions using the

unified method for the (1+1)-dimensions equation. The outcomes of the current study

manifest that the considered method is significant and systematic in solving nonlinear

evolution equations.
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Chapter 1
Literature review and Introduction

1.1. BACKGROUND AND INSPIRATION

The study of nonlinear differential equations has played an essential role in real-world

problems because it has been used as a model to describe complex physical phenom-

ena in almost every field of science and engineering for nearly the last decades, espe-

cially in plasma physics, fluid mechanics, solid-state physics, and plasma wave. Most of

the problems are nonlinear in the real world and are often represented by a system of

differential equations or a single differential equation. It is challenging to conceive any

area of applications where its effect is not felt. It is important to obtain their numerical

and exact analytical solutions to understand these phenomena better and use them in

practical scientific research. Generally, the nonlinear partial differential equations are

still complicated to solve numerically and theoretically. However, a significant arrange-

ment of action has been disbursed over the last ten decades or so in attempting to find

powerful, robust, and stable numerical and analytical methods for solving nonlinear par-

tial differential equations of physical interest.

A differential equation is a mathematical equation that involves one or more derivatives

of an unknown function. These equations are used to describe how a function and its

derivatives change with respect to one or more independent variables. The primary

purpose of the differential equation is the study of solutions that satisfy the equations

and the properties of the solutions. Many techniques and methods, such as separa-

tion of variables, integrating factors, and numerical methods like Euler’s method or finite

element methods, are employed to solve differential equations. Many real-world phe-

nomena can be modeled mathematically by using differential equations.

(1) Ordinary Differential Equations (ODE’s): ODE’s involve a single independent

variable and its derivatives. They describe processes or phenomena evolving
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2 1. LITERATURE REVIEW AND INTRODUCTION

with respect to a single variable, such as time. Common examples include

Newton’s second law of motion and radioactive decay. They can be solved by

various processes, like the separation of variables with the help of integrating

factors, etc.

(2) Partial Differential Equations (PDE’s): PDE’s involve multiple independent

variables and their partial derivatives. PDEs are used to describe phenomena

that depend on multiple variables, such as heat conduction, fluid flow, and wave

propagation. For example, the heat equation, wave equation, and Schrödinger

equation in quantum mechanics They can be solved by the separation of vari-

ables, canonical forms, etc.

(3) Linear Differential Equations: These are differential equations where the un-

known function and its derivatives appear in a linear manner. Linear differential

equations are typically more amenable to analytical solutions, and many real-

world problems can be approximated as linear under certain conditions.

(4) Non-Linear Partial Differential Equations: In these, the unknown function and

its derivatives appear in a nonlinear manner. Nonlinear differential equations are

generally more challenging to solve analytically, and their solutions often require

numerical techniques or approximations.A general ordinary differential equation

can be written concisely in the form:

F(t, u,
du
dt

) = 0,

involving the continuous Independent and dependent variable. As,

a(x, y)ux + b(x, y)uy + c(x, y)u = d(x, y).

is a linear (PDE) where coefficients of u, ux, uy are functions of independent

variable x, y. A (PDE) is said to be nonlinear if the relations between the un-

known functions and their partial derivatives involved in the equation are non-

linear. The distinction between a linear and a nonlinear partial differential equa-

tion is usually made in terms of the properties of the operator that defines the

(PDE’s) itself.

1.2. APPLICATIONS OF DIFFERENTIAL EQUATION:

(1) Application of first order differential equation: Orthogonal trajectory An

orthogonal trajectory is a curve that cuts each member of a family of curves

at a right angle. Or, to put it another way, it is the family of curves that cross

another family of curves perpendicularly. We use the differential equations in



1.3. DIMENSION OF A PARTIAL DIFFERENTIAL EQUATIONS(PDE’S) 3

order to solve cartesian and polar curves and find their respective orthogonal

trajectories.

(2) Application to tuned mass dampers (TMD):A single-story shear building vi-

brates in the event of an earthquake. The shear building is a rigid girder of mass

m and columns of combined stiffness k. The horizontal displacement x(t) can

be used to model the girder’s vibration. The ground displacement x0(t), as de-

picted, is used to mimic the earthquake. The internal friction between different

building parts causes the girder to vibrate with a damping force, which is repre-

sented by the equation cx′(t)− x′0(t) , where c is the damping coefficient. The

equation controls the relative displacement y(t), x(t), x0(t) between the girder

and the ground according to a second order linear ordinary differential equation:

m
∂2y
∂t2 + c

∂y
∂t

+ ky(t) = −m
∂2x0

∂t2 .

.

1.3. DIMENSION OF A PARTIAL DIFFERENTIAL EQUATIONS(PDE’S)

(1+1)-dimensional PDE’s: In a (1+1)-dimensional setting, nonlinear differential equa-

tions involve one spatial variable (x) and one temporal variable (t) and contain nonlinear

terms. Here is an example of a (1 + 1) dimensional nonlinear differential equation:

∂u
∂t

= F(x, t, u,
∂u
∂x

).

where F is a nonlinear function that relates the variables x, t, u,
∂u
∂x

. There are numerous

types of nonlinear differential equations that can be encountered, and their behavior and

solution techniques depend on their specific forms. Some notable examples include:

Wave Equation, Diffusion Equation, Schrø”dinger Equation.

(2+1)-dimensional PDE’s: A (2 + 1)-dimensional nonlinear partial differential equation

(PDE) is a mathematical equation that involves functions of two spatial dimensions x
and y and one time dimension (t), and it includes nonlinear terms, meaning that the

dependent variable and its derivatives are involved in nonlinear combinations. These

equations are commonly used to model complex physical phenomena. The general

form of a (2 + 1)−dimensional nonlinear PDE is:

∂u
∂t

= F
(

u,
∂u
∂x

,
∂u
∂y

,
∂2u
∂x2 ,

∂2u
∂y2 ,

∂2u
∂x∂y

)
.

Some notable examples include: The Korteweg-de Vries Equation (KdV), The Fisher-

KPP Equation (Fisher’s Equation), The Nonlinear Schrø”dinger Equation.
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(3+1)-dimensional PDE’s: A (3 + 1)-dimensional nonlinear partial differential equation

(PDE) is an equation that involves derivatives with respect to three spatial dimensions

(x, y, z) and one time dimension (t), and it contains nonlinear terms. These equations

describe how physical quantities change over both space and time and often arise in

various fields of science and engineering.

This project intends to confer (1 + 1)-Dimensional Partial Differential Equation.
These are used to mathematically formulate, and thus aid the solution of, physical and

other problems involving functions of several variables, such as the propagation of heat

or sound, fluid flow, elasticity, electrostatics, electrodynamics, etc.

1.4. SOME IMPORTANT PARTIAL DIFFERENTIAL EQUATIONS(PDE’S)

Korteweg-de Vries (KdV) The Korteweg-de Vries (KdV) equation is a partial differential

equation (PDE’s) that describes the evolution of long, one-dimensional waves in certain

dispersive systems. The KdV equation was first introduced by Boussinesq (1877) and

rediscovered by Diederik Korteweg and Gustav de Vries (1895), who found the simplest

solution, the one-soliton solution. Understanding of the equation and behavior of solu-

tions was greatly advanced by the computer simulations of Zabusky and Kruskal in 1965

and then the development of the inverse scattering transform in 1967. The KdV equation

is given by:
∂u
∂t

+ c
∂u
∂x

+ β
∂3u
∂x3 = 0.

where u(x, t) represents the amplitude of the wave at position x and time t. The coef-

ficients c and β depend on the specific system being modeled. The first term on the

left-hand side of the equation (
∂u
∂t

) describes the time evolution of the wave. The sec-

ond term (c
∂u
∂x

) accounts for the advection of the wave with a velocity c. The third term

(β
∂3u
∂x3 ) represents the dispersive effects of the system, allowing the wave to disperse or

spread out over time.

Kadomtsev-Petviashvili (KP) The Kadomtsev-Petviashvili (KP) equation is a partial

differential equation that describes certain types of nonlinear waves in two spatial di-

mensions. It was introduced independently by B.B. Kadomtsev and V.I. Petviashvili in

the late 1960s. The KP equation is particularly relevant in the study of water waves and

plasma physics. The KP equation is given by:

(ut + uxxx + 6uux)x + 3uyy = 0,
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where u is a scalar function of two independent variables x and y, t is the time variable,

ut denotes the partial derivative of u with respect to t, ux and uxx denote the partial

derivatives of u with respect to x and their second order, respectively, and similarly, uyy

denotes the partial derivative of u with respect to y and uxxx denotes the partial derivative

of u with respect to x and its third order. The coefficient σ determines the strength of the

dispersion in the y direction and σ2 = ±1. The case

(ut + uxxx + 6uux)x − 3uyy = 0,

is known as the KPII equation, and models, for instance, water waves with small surface

tension. The case σ = i is known as the KPI equation, and may be used to model

waves in thin films with high surface tension.employed to study its behalf the same way

that the KdV equation can be viewed as a universal integrable system in one spatial

dimension, the KP equation is a universal integrable system in two spatial dimensions

because many other integrable systems can be obtained as reductions. As a result, for

the past forty years, the KP equation has been the subject of intense research in the

mathematical community. The KP equation, which results from the reduction of a sys-

tem with quadratic nonlinearity that admits weakly dispersive waves in a paraxial wave

approximation, is also one of the most widely used models in nonlinear wave theory. In

the asymptotic description of such systems, where only the leading order terms are kept

and an asymptotic equilibrium between weak and strong terms is achieved, the equa-

tion arises naturally as a distinct limit. The KP equation is a fundamental equation in

soliton theory, as it supports soliton solutions. Solving the KP equation analytically can

be challenging due to its nonlinear and dispersive nature. However, numerical methods

and approximations are often vior and obtain solutions for specific cases.

Non-linearity of KP equation: The KP equation is a nonlinear dispersive equation,

meaning that it exhibits both nonlinear and dispersive behavior. Nonlinearity arises from

the term 6uux, which represents the interaction of the wave with itself. Dispersion, on

the other hand, is represented by the terms uxxx and 3σ2uyy, which describe how the

wave spreads out over time and space.

The (2+1)-dimensional nature of KP The Kadomtsev-Petviashvili (KP) equation is ac-

tually a (2+1)-dimensional partial differential equation. It involves two spatial dimen-

sions, x and y, and one temporal dimension, t. The equation describes the evolution of

a function u(x, y, t) in two spatial dimensions and time. The coefficient α determines

the strength of the dispersion in the y direction. The (2+1)-dimensional nature of the KP

equation allows for the propagation of waves and the interaction of these waves in two

spatial dimensions, which gives rise to interesting and complex dynamics.
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Laplace equation The Laplace equation is typically written in Cartesian coordinates

as: ∆2u = 0, where u is a scalar function of position (x, y, z), and ∆2 represents the

Laplace operator, also known as the Laplacian. The Laplacian is defined as the sum of

the second partial derivatives of u with respect to each of the spatial coordinates:

∆2u =
∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2 = 0.

In simple terms, the Laplace equation states that the sum of the second derivative of u

with respect to each coordinate is zero.

The non-linearity of Laplace Equation:The Laplacian operator (∆2) is a linear oper-

ator, and when applied to a function u, it produces a linear combination of the second

partial derivatives of u. However, there are nonlinear equations that are closely related

to the Laplace equation, such as the Poisson equation (∆2u = f (u)), where f (u) is

a nonlinear function of u. However, the Laplace equation itself is linear and describes

linear phenomena, while nonlinear effects are introduced when additional terms or non-

linear dependencies are incorporated into the equation.

The Poisson equation extends the Laplace equation by introducing a source term,

which can be a function of the solution itself. In its general form, the Poisson equation is

given by: ∆2u = f , where u is a scalar function of position (x, y, z), ∆2 represents the

Laplacian operator
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 ,

, and f is a known function that acts as the source or driving term. The Poisson equation

arises in various scientific and engineering applications. To solve the Poisson equation,

one typically needs to specify appropriate boundary conditions, which describe the be-

havior of the solution u on the boundaries of the domain. These conditions can include

Dirichlet boundary conditions, where the values of u are specified on the boundary.

Burger equation is obtained as a result of combining nonlinear wave motion with linear

diffusion and is the simplest model for analyzing combined effect of nonlinear advection

and diffusion. For a given field and diffusion, the general form of Burger equation (also

known as viscous Burger equation) in one space dimension is the dissipative system:

ut + u.ux = εuxx where ε > 0 is the constant of viscosity. This is the simplest PDE

combining both non-linear propagation effects and diffusive effects. When the right term

is removed from equation we obtain the hyperbolic PDE

ut + u.ux = vuxx.

Non-linearity of Burger’s Equation arises from the fact that the velocity u is multiplied

by its own derivative (
∂u
∂x

), resulting in a quadratic term. This nonlinearity introduces
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complexities and interesting phenomena into the equation’s behavior. One consequence

of the nonlinearity is the formation of shock waves in the solution of Burger’s equation.

Shock waves are discontinuous changes in the solution that occur when a localized

region of high velocity propagates through the fluid. Another effect of the nonlinearity

is the generation of solitons, which are solitary wave solutions that maintain their shape

while propagating at a constant speed. Solitons in Burger’s equation are known as

viscous or Korteweg-de Vries (KdV) solitons and arise due to the balance between the

nonlinear convection and the diffusive effects. The nonlinearity of Burger’s equation also

contributes to the occurrence of other interesting phenomena, such as the development

of instabilities, wave breaking, and the interaction of different wave components.

1.5. EXACT SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATION

The fact of studying nonlinear partial differential equations is considered as a compli-

cated and challenging endeavor. Compared with the variety of methods present in linear

equations, the methods for nonlinear equations are limited to some specific categories.

Due to the complexity in nature, there is no general method to solve the nonlinear partial

differential equations. Thus, when dealing with a nonlinear partial differential equation,

and the first stage is to linearize it or to avoid the nonlinear factors entirely. However,

in investigating the behavior of the physical system, one often arrives across situations

when the linearized model needs to be approximate. That is when the study of nonlinear

models as such becomes imperative. In the nineteenth century, linear systems became

the mathematical discipline and accomplished outstanding success throughout the sci-

ences. On the other hand, due to the complex nature of nonlinear partial differential

equations, they remained much harder to understand.

Consequently, It is interesting to obtain an exact invariant solution of nonlinear partial

differential equations essential for exploring the sensitivity of physical phenomena with

several important physical parameters described by constant and variable coefficients.

These solutions of nonlinear partial differential equations provide a complete and pre-

cise description of the system being investigated, which can be used to extract valuable

information about its properties. Thus, there has been more interest in finding the exact

solutions of nonlinear equations during the last few decades. These solutions provide

information about the various aspects of physical and nonlinear phenomena. Exact so-

lutions can be used as models for physical experiments and benchmarks for testing

numerical algorithms. These solutions can be a basis for perfecting and testing com-

puter algebra software packages for solving differential equations. The explicit solutions

for NLPDEs are rare, and the methods that generate the solutions are getting popular
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and increasingly sought.

So to find the exact solutions, there exist and developed several effective methods

have been such as the Direct method [1], Bäcklund transformation [2], Inverse scat-

tering transformation [3], tanh-sech method [4], modified (G’/G)-expansion method [5],

extended tanh method [6], sine-cosine method [7], Hirota method [8], unified method

[9, 10], homogeneous balance method [11], Jacobi elliptic function method [12], F-

expansion method [13], variational iteration method [14], homotopy perturbation method

[15].

Recently, many researchers have been providing much awareness on the application of

constructing the solitons and solitary wave solutions of nonlinear PDEs [16–18], which

occur in nonlinear phenomena. Consequently, several powerful methods have been

determined to construct the solitons and solitary wave solutions, such as the direct al-

gebraic method [19], auxiliary equation method [20], inverse scattering scheme [21],

Bäcklund transform method [22], extended mapping method [23], and Lie symmetry

method [24–26].

In this project, we study the invariance of certain non-linear partial differential equations

in order to determine their similarity solutions. The methods we use for this purpose are

as follows:

1.6. UNIFIED METHOD:

The unified method is a useful method that has appeared in recent times for finding

exact solutions of nonlinear partial differential equations (NLPDE’s). New obtained ex-

act solutions are different types of soliton wave properties along with trigonometric, hy-

perbolic, and rational functions solutions. The gained distinguished varieties of exact

solutions contain vital applications in engineering and physics. With 3D, 2D, density,

and contour graphical illustration, mathematical results explicitly exhibit the proposed

algorithm’s complete honesty and high performance. From the observation of the out-

comes acquired, it is noticed that the unified method can generate essential effects in

taking the exact solutions of (NLPDE’s). The unified method is a useful method that

has appeared in recent times for finding exact solutions of nonlinear partial differential

equations (NLPDE’s). New obtained exact solutions are different types of soliton wave

properties along with trigonometric, hyperbolic, and rational functions solutions. The

gained distinguished varieties of exact solutions contain vital applications in engineering

and physics. With 3D, 2D, density, and contour graphical illustration, mathematical re-

sults explicitly exhibit the proposed algorithm’s complete honesty and high performance.
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From the observation of the outcomes acquired, it is noticed that the unified method can

generate essential effects in taking the exact solutions of (NLPDE’s).

1.6.1. Methodology. Gozukizil et al. [9] applied the unified method to construct

divers solutions of the nonlinear partial differential equations in their study. The fun-

damental steps of the employed method are as follows:

Step 1: In general, the nonlinear partial differential equations with two independent

variables t and x as follows

F (Θx , Θt , Θxt , Θxx , Θxxx , Θxxt , . . . ) = 0, (1.1)

where Θ(x, t) is an unknown function of x and t and F is a polynomial in Θ and its vari-

ous derivatives in which the higher order derivative and nonlinear terms are both involve.

In order to find the solutions of given equation we commence with the following transfor-

mation

Θ(x, t) = Ψ(X), with X = αx− βt, (1.2)

in which α1 and α2 are real parameters. With the procedure described above, we reduce

equation (1.1) to the following ordinary differential equation(ODE)

G(Ψ, Ψ′, Ψ′′, Ψ′′′, . . . ) = 0, (1.3)

Set 2: Now we integrate equation (1.3) as many times as possible. Keep the integrating

constant to zero.

We set up the trial solution of ODE equation (1.3) in the following form

Ψ(X) = K0 +
N

∑
i=1

[
Ki f (X)i + Li f (X)−i

]
. (1.4)

where K0, Ki, Li (1 ≤ i ≤ N) are the arbitrary coefficients and explicit invariant

function f (X) in equation (1.4) is satisfy the following Riccati differential equation

f ′(X) = f 2(X) + M, (1.5)

The nine solutions of the above equation (1.5) are given by in three cases:

Case 1: Hyperbolic function solutions (when M is negative)
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(i) f (X) =

√
−(P2 + Q2)M− P

√
−M cosh(2

√
−M(X + φ))

P sinh(2
√
−M(X + φ)) + Q

,

(ii) f (X) =
−
√
−(P2 + Q2)M− P

√
−M cosh(2

√
−M(X + φ))

P sinh(2
√
−M(X + φ)) + Q

,

(iii) f (X) =
√
−M +

2P
√
−M

P + cosh(2
√
−M(X + φ))− sinh(2

√
−M(X + φ))

,

(iv) f (X) = −
√
−M +

2P
√
−M

P + cosh(2
√
−M(X + φ))− sinh(2

√
−M(X + φ))

.

(1.6)

Case 2: Trigonometric function solutions (when M is positive)

(v) f (X) =

√
(P2 + Q2)M− P

√
M cos(2

√
M(X + φ))

P sin(2
√

M(X + φ)) + Q
,

(vi) f (X) =
−
√
(P2 + Q2)M− P

√
M cos(2

√
M(X + φ))

P sin(2
√

M(X + φ)) + Q
,

(vii) f (X) = i
√

M +
2iP
√

M
P + cos(2

√
M(X + φ))− i sin(2

√
M(X + φ))

,

(viii) f (X) = −i
√

M +
2iP
√

M
P + cos(2

√
M(X + φ))− i sinh(2

√
M(X + φ))

.

(1.7)

Case 3: Rational function solutions (when M = 0)

(ix) f (X) = − 1
X + φ

, (1.8)

when P 6= 0, φ and Q are arbitrary parameters.

Set 3: We determine the positive integer N in equation (1.3) by taking into account the

homogeneous balance between the highest order derivatives and the nonlinear terms in

equation (1.3).

Set 4: By using the equation (1.4) into equation (1.3) with the use of equation (1.5) and

gathering the coefficients of f k(X), we are get a set of algebraic equations and then

solving this system of algebraic equations, we obtain several sets of solutions.

Set 5: Substituting sets of solutions which is obtained in step 4 and using the gen-

eral solutions of (1.5) in step 2, explicit solutions of (1.3) can be obtained immediately

depending on the Value M.
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1.7. SOLITONS

Solitons are fascinating and important solutions that arise in the context of nonlinear par-

tial differential equations (PDEs). A soliton is a localized, self-reinforcing waveform that

can maintain its shape and propagate over long distances without dissipating or spread-

ing out. It behaves as a particle-like entity, preserving its energy, momentum, and other

physical properties during its motion. Nonlinear PDEs are mathematical equations that

describe a wide range of physical phenomena, including fluid dynamics, optics, quantum

mechanics, and more. Solitons typically emerge as solutions to these equations when

nonlinear effects are present.

One of the remarkable aspects of solitons is their stability. Unlike most waveforms,

solitons can interact with other solitons and emerge unchanged, except for a phase

shift or velocity change. This property is known as soliton stability or the ”integrability”

of the underlying PDE. Integrable equations possess an infinite number of conserved

quantities, which are instrumental in preserving the soliton’s characteristics during in-

teractions. Solitons have practical applications in various fields. In fiber optics, solitons

are employed to transmit data over long distances without distortion. They are also

relevant in understanding rogue waves in the ocean, where localized waves with ex-

ceptionally large amplitudes can form and persist. Solitons are also crucial in studying

nonlinear phenomena in plasmas, condensed matter physics, and many other areas of

science and engineering. In summary, solitons are special solutions of nonlinear PDEs

that maintain their shape, propagate without dissipating, and interact with other solitons

while preserving their properties. They have significant implications in various branches

of science and technology, making them an exciting and rich topic of study.

1.7.1. Role of Solitons in (PDE’s). In the context of (PDE’s), solitons arise as solu-

tions to certain nonlinear equations that exhibit a balance between dispersion (spreading

out) and nonlinearity (self-interaction). They are characterized by their stability, robust-

ness, and ability to maintain their shape and integrity over long distances.

(1) Wave Propagation: Solitons can propagate through a medium while retaining

their shape and velocity.

(2) Nonlinear Dynamics: Solitons are nonlinear phenomena that emerge due to the

interplay between nonlinearity and dispersion in PDEs. They provide insights

into the rich dynamics and behavior of nonlinear systems and offer a means to

understand complex phenomena.
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(3) Stability Analysis: Solitons often correspond to stable solutions of PDEs. Sta-

bility analysis involves studying the behavior of small perturbations around soli-

tonic solutions to determine their long-term behavior. This analysis provides

valuable information about the stability or instability of the system.

(4) Integrability: Solitons are intimately connected to integrable systems. Integrable

PDEs possess an infinite number of conserved quantities, making their solu-

tions soliton-like. This property allows for exact analytical solutions, leading to a

deeper understanding of the underlying dynamics.

(5) Information Transmission: Solitons have the unique property of preserving their

shape during propagation, making them useful for information transmission.

They are employed in fields like optical communications, where soliton pulses

can propagate long distances without significant distortion.

(6) Mathematical Physics: The study of solitons has contributed to the development

of mathematical physics, including advancements in nonlinear analysis, inverse

scattering transform, and the theory of integrable systems. Solitons have been

instrumental in exploring the connections between PDEs, symmetries, and con-

servation laws.

1.7.2. Applications of solitons: The unique properties of the solitons and stability

make them valuable tools in various scientific disciplines, enabling advances in technol-

ogy, communication, and fundamental research. One of the most significant applications

of solitons is in fiber optics. Soliton pulses can propagate over long distances without

significant distortion, making them ideal for high-speed data transmission.

(1) Nonlinear Optics: Solitons play a crucial role in nonlinear optics, where the inter-

action of light with nonlinear materials leads to fascinating phenomena. Soliton

pulses can propagate through nonlinear media, maintaining their shape and

stability.

(2) Water Waves: Solitons can occur in water waves, forming stable localized wave

packets that maintain their shape and travel over long distances. These solitons

are observed in various natural phenomena, such as tidal bores, tsunamis, and

rogue waves. Understanding solitonic behavior in water waves helps in predict-

ing and mitigating the impact of extreme wave events.



Chapter 2
Exact solitary waves solutions of the

(1+1)- dimensional Lonngren Equation

Finding soliton solutions of nonlinear partial differential equation (NLPEs) plays an es-

sential role in study of various fields of sciences, especially in physics. Recently various

dominant methods have been offered for finding solitons solutions, for instance: double

(G/G, 1/G)-expansion method, Baffle-type Vortex Generators, Unified Method etc.The

objective of this work is to provide various multiwave kinks for (1+1)-dimensional longi-

tudinal lonngren wave equation,

∂2

∂t2

(
uxx − αu + βu2

)
+ uxx = 0

where α and β are constants. This equation describes the electrical signals in telegraph

lines on the basis of the tunnel diode. It was used as an example to show the existence

of strong connection between the G′/G expansion method and the modified extended

tanh method. Other uses include modelling of waves in shallow water such as beaches,

lakes and rivers. It offers adequate general soliton solutions which are connected in

diverse branches of scientific fields.

2.0.1. Verification of Unified method on Lonngren wave equation. In general,

the non-linear partial differential equations with two independant variables x and t as

follows:

P (u, ux, ut, uxx, uxt, utt) = 0, (2.1)

where u(x, t) is an unknown function of x and t and P is a polynomial in u and its various

derivatives in which the higher order derivative and non-linear terms are both involved.In

order to find the solutions of Lonngren wave equation we commence with the following

13
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transformation:

u(x, t) = u(ε),

with

ε = x− ct,

in which c is a real variable. With the procedure described above, we reduce equation

(2.1) to the following ordinary differential equation (ODE).

F(U, U′′, U′′) = 0. (2.2)

Now, we integrate equation (2.2), Keep the integration constant to zero.

We set up the trial solution, the solution (1.4)

u(ε) = a0 +
M

∑
i

[
aiφ
′ + biφ

−1
]

.

where φ = φ(ε) is a solution of riccati equation: φ′ = φ2 + b.

Now, we balance the linear terms of highest order with the non-linear term of highest

degree in the new version of above equation to find M, while using (1.5)

2.0.2. Lonngren Equation and verification by unified method: In this section,

numerous exact-soliton solutions for a non linear lonngren wave equation are addressed

by using the unified method.

∂2

∂t2

(
uxx − αu + βu2

)
+ uxx = 0 (2.3)

Partially differentiating (2.3), with respect to t.

uxxtt − utt + u2
tt + uxx = 0 (2.4)

We assume the following transformation for converting the Lonngren’s Wave Equation

to Ordinary Differential Equation.

u(x, t) = U(ε), ux = U′(ε), ut = −cU′(ε), uxx = U′′(ε) (2.5)

utt = c2U′′(ε), uxxtt = c2U′′′′(ε), u2
tt = c2U2(ε)′′. (2.6)

Substituting (2.6) into (2.4), we have

c2 U′′′′(ε)− αc2 U′′(ε) + βc2 U′′2(ε) + U′′(ε) = 0 (2.7)

Integrating (2.7) twice and putting integration constant zero, we have

c2U′′(ε) + (1− αc2)U(ε) + βc2U2 = 0 (2.8)
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2.1. SUMMARY OF THE UNIFIED METHOD

Implementing balancing principle on U′′ and U2 of the above ODE (2.7) to find the value

M, we have 2M = M + 2 implies M = 2

U(ε) = a0 +
a1

φ
+

b1

φ
+ a2φ2 +

b2

φ2 (2.9)

U2(ε) =

[
a0 + a1φ +

b1

φ
+ a2φ2 +

b2

φ2

]2
(2.10)

U′(ε) = a1φ′ − φ′b1/φ2 + 2a2′2′1 − 2φ′b2/φ3 (2.11)

U′′(ε) = a1φ′′ + 2a2φ′φ′ + 2a2φ′′φ′ − b1

[
φ′′

φ2 − 2
φ′φ′

φ3

]
− 2b2

[
φ′′

φ3 − 3
φ′φ′

φ4

]
(2.12)

Substituting this in (2.12)

U′′(ε) = 2ba1φ+ 8ba2φ2 + 2a1φ3 + 6a2φ4 + 2b2 + 2a2b2 +
2bb1

φ
+

8bb2

φ2 +
2b1b2

φ3 +
2b2b2

φ4

Here, we consider some sets of solutions to derive the exact solitary wave solutions of

via the computational software Mathematica.

2a1bc2 + a1 − αc2a1 + 2βc2a0a1 + 2βc2a2b1 = 0,

8a2bc2 + a2 − αc2a2 + 2βc2a0a2 + βc2a2
1 = 0,

2a1c2 + 2βc2a1a2 = 0,

6a2c2 + βc2a2
2 = 0,

2b1bc2 + b1 − αc2b1 + 2βc2a0b1 + 2βc2a1b2 = 0,

8b2bc2 + b2 − αc2b2 + 2βc2a0b2 + βc2a1b1 = 0,

6b2b2c2 + βc2b2
2 = 0,

2a2b2c2 + 2b2c2 + a0 − αc2a0 + βc2a2
0 + 2βc2a1b1 + 2βc2a2b2 = 0.

2.1.1. Solution Set: After getting solution sets of coefficients in mathematica:

U (ε) = a0 + a1φ + a2φ2 +
b1

φ
+

b2

φ2 (2.13)

Set-1:

c = ± 1√
4b + m

, b1 = 0, b2 = 0, a1 = 0, a0 =
−6b

n
, a2 =

−6
n

(2.14)

Case-1: b < 0,

φ =

√
(−A2 + B2)b− A

√
−b cosh(2

√
−b(ε + ξ0))

A sinh(2
√
−b(ε + ξ0)) + B

(2.15)
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FIGURE 2.1. Plot3D of the
Equation (2.17)

FIGURE 2.2. Contour Plot of
the Equation (2.17)

Putting this and set-1 values in equation (2.13) to obtain U(ε)

U(ε) =
−6b

n
− 6

n

[√
(−A2 + B2)b− A

√
−b cosh(2

√
−b(ε + ξ0))

A sinh(2
√
−b(ε + ξ0)) + B

]2

(2.16)

u(x, t) =
−6b

n
− 6

n

√(−A2 + B2)b− A
√
−b cosh(2

√
−b(x± t√

4btm
+ ξ0))

A sinh(2
√
−b(x± t√

4btm
+ ξ0)) + B

2

,

(2.17)

u(x, t) =
−6b

n
− 6

n

√(−A2 + B2)b + A
√
−b cosh(2

√
−b(x± t√

4btm
+ ξ0))

A sinh(2
√
−b(x± t√

4btm
+ ξ0)) + B

2

,

(2.18)

u(x, t) = −6
√
−b

n

1 +
−2A

A + cosh(2
√
−b(x± t√

4btm
+ ξ0))− sinh(2

√
−b(x± t√

4btm
+ ξ0))

2

,

− 6b
n

, (2.19)

u(x, t) = −6
√
−b

n

1 +
2A

A + cosh(2
√
−b(x± t√

4btm
+ ξ0)) + sinh(2

√
−b(x± t√

4btm
+ ξ0))

2

− 6b
n

. (2.20)
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FIGURE 2.3. Plot3D of the
Equation (2.23)

FIGURE 2.4. Contour Plot of
the Equation (2.23)

Case-2: b > 0,

φ =

√
(A2 + B2)b− A

√
b cosh(2

√
b(ε + ξ0))

A sinh(2
√

b(ε + ξ0)) + B
(2.21)

U(ε) =
−6b

n
− 6

n

[√
(A2 + B2)b− A

√
b cosh(2

√
b(ε + ξ0))

A sinh(2
√

b(ε + ξ0)) + B

]2

(2.22)

u(x, t) =
−6b

n
− 6

n

√(A2 + B2)b− A
√

b cosh(2
√

b(x± t√
4btm

+ ξ0))

A sinh(2
√

b(x± t√
4btm

+ ξ0)) + B

2

, (2.23)

u(x, t) =
−6b

n
− 6

n

√(A2 + B2)b + A
√

b cosh(2
√

b(x± t√
4btm

+ ξ0))

A sinh(2
√

b(x± t√
4btm

+ ξ0)) + B

2

, (2.24)

u(x, t) = −6
n

ι
√

b +
−2Aι

√
b

A + cos(2
√

b(x± t√
4btm

+ ξ0))− ι sin(2
√

b(x± t√
4btm

+ ξ0))

2

− 6b
n

, (2.25)

u(x, t) = −6
n

−ι
√

b +
2Aι
√

b
A + cos(2

√
b(x± t√

4btm
+ ξ0)) + ι sin(2

√
b(x± t√

4btm
+ ξ0))

2

− 6b
n

. (2.26)

Case-3: b = 0,
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FIGURE 2.5. Plot3D of the
Equation (2.29)

FIGURE 2.6. Contour Plot of
the Equation (2.29)

U(ε) =
−6b

n
− 6

n

[
−1

ε + ξ0

]2
(2.27)

u(x, t) =
−6
n

 −1
x± 1√

m + ξ0

2

(2.28)

u(x, t) =
−6

n(x± t√
m + ξ0)2

. (2.29)

Set-2

c = ± 1√
4b + m

, b1 = 0, b2 = 0, a1 = 0, a0 =
−2b

n
, a2 =

−6
n

(2.30)

Using the transformations as used above: Case-1: b < 0,

φ =

√
(−A2 + B2)b− A

√
−b cosh(2

√
−b(ε + ξ0))

A sinh(2
√
−b(ε + ξ0)) + B

(2.31)

Putting this and set-2 values in above equation to obtain U(ε)

u(x, t) =
−2b

n
− 6

n

√(−A2 + B2)b− A
√
−b cosh(2

√
−b(x± t√

4btm
+ ξ0))

A sinh(2
√
−b(x± t√

4btm
+ ξ0)) + B

2

,

(2.32)
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FIGURE 2.7. Plot3D of the
Equation (2.32)

FIGURE 2.8. Contour Plot of
the Equation (2.32)

u(x, t) =
−2b

n
− 6

n

√(−A2 + B2)b + A
√
−b cosh(2

√
−b(x± t√

4btm
+ ξ0))

A sinh(2
√
−b(x± t√

4btm
+ ξ0)) + B

2

,

(2.33)

u(x, t) =
−2b

n
− 6

n

[
√
−b +

−2A
√
−b

A + cosh(Φ)− sinh(Φ)

]2

, (2.34)

u(x, t) =
−2b

n
− 6

n

[
√
−b +

2A
√
−b

A + cosh(Φ) + sinh(Φ)

]2

. (2.35)

Where Φ = 2
√
−b(x± t√

4btm
+ ξ0).

Case-2: b > 0,

φ =

√
(A2 + B2)b− A

√
b cosh(2

√
b(ε + ξ0))

A sinh(2
√

b(ε + ξ0)) + B
(2.36)

u(x, t) =
−2b

n
− 6

n

√(A2 + B2)b− A
√

b cosh(2
√

b(x± t√
4btm

+ ξ0))

A sinh(2
√

b(x± t√
4btm

+ ξ0)) + B

2

, (2.37)

u(x, t) =
−2b

n
− 6

n

√(A2 + B2)b + A
√

b cosh(2
√

b(x± t√
4btm

+ ξ0))

A sinh(2
√

b(x± t√
4btm

+ ξ0)) + B

2

, (2.38)
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FIGURE 2.9. Plot3D of the
Equation (2.37)

FIGURE 2.10. Contour Plot of
the Equation (2.37)

u(x, t) =
−2b

n
− 6

n

ι
√

b +
−2Aι

√
b

A + cos(2
√

b(x± t√
4btm

+ ξ0))− ι sin(2
√

b(x± t√
4btm

+ ξ0))

2

,

(2.39)

u(x, t) =
−2b

n
− 6

n

−ι
√

b +
2Aι
√

b
A + cos(2

√
b(x± t√

4btm
+ ξ0)) + ι sin(2

√
b(x± t√

4btm
+ ξ0))

2

.

(2.40)

Case-3 : b = 0,

U(x, t) =
−6
n

 −1
x± 1√

m + ξ0

2

(2.41)

u(x, t) =
−6

n(x± t√
m + ξ0)2

(2.42)

As it can be seen that unified method gives more than 49 solutions for the Lonngren

wave equation when account the positiveness or negativeness of values.

2.2. RESULTS AND DISCUSSIONS:

In this chapter, we have done a study of solitons in the context of non linear partial

differential equations solved using the Unified method. We looked at some various

NLPDEs, into the Lonngren wave equation. Unified method has been used to solve

these NLPDEs as it has been observed that it can generate essential effects in taking

the exact solutions of NLPDEs. The solutions that arise in this context, solitons, are
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localized, self-reinforcing waveforms that can maintain their shape and propagate over

long distances without dissipating or spreading out. They have applications in non linear

optics and naturally occurring phenomena like water waves. We verified the Lonngren

wave equation by using the Unified method and generated solution sets and illustrated

the same with multiwave 3D plots and contour plots using Mathematica.

(1) Figure 1,2: Plots of multiwave solution in (2.17) are presented via n=3, A=1,

B=1.2, b=1, ε = 0.2, m=2.5, (1) multiwave 3D plot, (2) contour plot respectively.

(2) Figure 3,4: Plots of multiwave solution in (2.23) are presented via n=3, A=1,

B=1.2, b=1,ε = 0.2 , m=2.5, (3) multiwave 3D plot, (4) contour plot respectively.

(3) Figure 5,6: Plots of multiwave solution in (2.29) are presented via n=3,ε = 0.2,

m=2.5, (5) multiwave 3D plot, (6) contour plot respectively.

(4) Figure 7,8: Plots of multiwave solution (2.32) are presented via n=3, A=1, B=1.2,

b=1,ε = 0.2, m=2.5, (7) multiwave 3D plot, (8) contour plot respectively.

(5) Figure 9,10: Plots of multiwave solution in (2.37) are presented via n=3, A=1,

B=1.2, b=1,ε = 0.2, m=2.5, (9) multiwave 3D plot, (10) contour plot respectively.





Chapter 3
Exact soliton solutions of the (1+1)-

dimensional of the Burger’s Equation

Burgers equation is a partial differential equation in fluid dynamics. It makes an attempt

to explain the behaviour of viscous fluids under certain conditions. This is the simplest

nonlinear model equation for diffusive waves in fluid dynamics. Burgers (1948) first de-

veloped this equation so as to throw light on the turbulence described by the interaction

of two opposite effects of convection and diffusion. In the (1.4) u represents the velocity

of the fluid as function of time and position t and x respectively.
∂u
∂t

represents change

of velocity with respect to time t.
∂u
∂x

represents the spatial gradient velocity. v is the

small diffusivity.

The term uux expresses the shocking up effect that causes the waves to break up, and

the term is the diffusion term. The Burgers equation is a nonlinear equation because of

ux the term in the advection portion of the equation. This equation helps in capturing

the non linear effects of fluid dynamics. The presence of the diffusion term prevents the

gradual distortion of the wave and its breaking by countering the nonlinearity. The result

is a balance between the nonlinear advection term and the linear diffusion term much

the same way as occurs in a real shock wave in the narrow region where the gradient is

steep. It mimics the Navier Stokes equation of fluid motion. If we think of u as the ve-

locity then the right hand side of the Burgers equation represents the momentum being

advected by the deterministic component of the flow, while the right hand side depicts

the diffusion through thermal fluctuations.

The Burgers equation combines convection (advection) and diffusion (viscosity) effects

of fluid mechanics. It expresses the balance between the fluids tendency to flow (con-

vection) with its tendency to spread out or diffuse due to its viscosity. It can give slight

insights into aspects of turbulence especially in one dimensional circumstances.
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3.0.1. Burger’s Equation and verification by unified method:

ut + u.ux = nuxx

We assume the following transformation to convert the given Burger’s Equation into

Ordinary Differential Equation.

u(x, t) = U(ε) (3.1)

Partially Differentiating (3.1) with respect to x, we get:

ux = U′(ε),

uxx = U′′(ε),

ut = −cU′(ε) = −cu′′.

Integrating the above equation required times and putting the integration constant to 0.

Here M = 1 Now putting the values of φ′ and φ′′ using the Riccati equation,

φ′(ε) = φ2(ε) + b, (3.2)

U(ε) = a0 + a1φ +
b1

φ
, (3.3)

U′(ε) = a1φ′ − b1φ′

φ2 , (3.4)

So, U′(ε) = a1(φ
2 + b)− b1

φ2 (φ
2 + b). (3.5)

Differentiating Above Equation (3.5):

U′′(ε) = 2a1φφ′ +
2bb1φ′

φ3 , (3.6)

U′′(ε) = 2a1φ3 + 2a1bφ +
2bb1

φ
+

2b2b1

φ3 . (3.7)

Integrating the above equation (3.5) required times and putting the integration constant

to 0. Putting these value above using riccati equation,we get:

φ4[a2
1b− 2a1bn] = 0,

φ5[a0a1 − a1c] = 0,

φ6[a2
1 − 2a2n] = 0,

φ2[−b2
1 − 2bb1n] = 0,

φ[−a0bb1 + bb1c] = 0,

−bb2
1 − 2b2b1n = 0,
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FIGURE 3.1. Plot3D of the
Equation (3.11)

FIGURE 3.2. Contour Plot of
the Equation (3.11)

φ3[a0a1b− a0b1 − abc + b1c] = 0.

3.0.2. Solution Set: After getting solution sets of coefficients in mathematica:

U (ε) = a0 + a1φ +
b1

φ
. (3.8)

Set-1: Here a0 = c and a1 = 2n and b1 = 0.

Case-1: b < 0,

φ =

√
(−A2 + B2)b− A

√
−b cosh(2

√
−b(ε + ξ0))

A sinh(2
√
−b(ε + ξ0)) + B

. (3.9)

U(ε) = a0 + a1φ +
b1

φ
. (3.10)

u1(x, t) = c + 2n

[√
(−A2 + B2)b− A

√
b cos(2

√
b(ε + ξ0))

A sin(2
√

b(ε + ξ0)) + B

]
, (3.11)

u2(x, t) = c + 2n

[
−
√
(−A2 + B2)b− A

√
b cos(2

√
b(ε + ξ0))

A sin(2
√

b(ε + ξ0)) + B

]
, (3.12)

u3(x, t) = c + 2n

[
ι
√

b +
−2Aι

√
b

A + cos(2
√

b(ε + ξ0))− ι sin(2
√

b(ε + ξ0))

]
, (3.13)

u4(x, t) = c + 2n

[
−ι
√

b +
2Aι
√

b
A + cos(2

√
b(ε + ξ0)) + ι sin(2

√
b(ε + ξ0))

]
. (3.14)

Case-2: b > 0,

φ =

√
(A2 + B2)b− A

√
b cosh(2

√
b(ε + ξ0))

A sinh(2
√

b(ε + ξ0)) + B
(3.15)



26 3. BURGER’S EQUATION

FIGURE 3.3. Plot3D of the
Equation (3.16)

FIGURE 3.4. Contour Plot of
the Equation (3.16)

u5(x, t) = c + 2n

[√
(−A2 + B2)b− A

√
−b cos(2

√
−b(ε + ξ0))

A sin(2
√
−b(ε + ξ0)) + B

]
(3.16)

u6(x, t) = c + 2n

[
−
√
(−A2 + B2)b− A

√
−b cos(2

√
−b(ε + ξ0))

A sin(2
√
−b(ε + ξ0)) + B

]
(3.17)

u7(x, t) = c + 2n

[
ι
√
−b +

−2Aι
√
−b

A + cos(2
√
−b(ε + ξ0))− ι sin(2

√
−b(ε + ξ0))

]
(3.18)

u8(x, t) = c + 2n

[
−ι
√
−b +

2Aι
√
−b

A + cos(2
√
−b(ε + ξ0)) + ι sin(2

√
−b(ε + ξ0))

]
(3.19)

Case-3:b = 0,

u9(x, t) = c + 2n
[
−1

(ε + ξ0)

]
(3.20)

Set-2: Here a0 = c and a1 = 0 and b1 = −2bn
Case-1: b < 0,

φ =

√
(−A2 + B2)b− A

√
−b cosh(2

√
−b(ε + ξ0))

A sinh(2
√
−b(ε + ξ0)) + B

(3.21)

U(ε) = a0 + a1φ +
b1

φ
(3.22)
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FIGURE 3.5. Plot3D of the
Equation (3.23)

FIGURE 3.6. Contour Plot of
the Equation (3.23)

u10(x, t) = c− 2bn

[
A sin(2

√
b(ε + ξ0)) + B√

(A2 + B2)b− A
√

b cos(2
√

b(ε + ξ0))

]
(3.23)

u11(x, t) = c− 2bn

[
A sin(2

√
b(ε + ξ0)) + B√

−(A2 + B2)b− A
√

b cos(2
√

b(ε + ξ0))

]
(3.24)

u12(x, t) = c− 2bn

[
A + cos(2

√
b(ε + ξ0))− ι sin(2

√
b(ε + ξ0))

ι
√

bA + ι
√

b cos(2
√

b(ε + ξ0)) + ι
√

b sin(2
√

b(ε + ξ0))− 2Aι
√

b

]
(3.25)

u13(x, t) = c− 2bn

[
A + cos(2

√
b(ε + ξ0)) + ι sin(2

√
b(ε + ξ0))

−ι
√

bA− ι
√

b cos(2
√

b(ε + ξ0)) + ι
√

b sin(2
√

b(ε + ξ0)) + 2Aι
√

b

]
(3.26)

(3.27)

Case-2: b > 0

φ =

√
(A2 + B2)b− A

√
b cosh(2

√
b(ε + ξ0))

A sinh(2
√

b(ε + ξ0)) + B
(3.28)

u14(x, t) = c− 2bn

[
A sinh(2

√
−b(ε + ξ0)) + B

−
√
(−A2 + B2)b− A

√
−b cosh(2

√
−b(ε + ξ0))

]
(3.29)

u15(x, t) = c− 2bn

[
A sinh(2

√
−b(ε + ξ0)) + B√

(−A2 + B2)b− A
√
−b cosh(2

√
−b(ε + ξ0))

]
(3.30)
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FIGURE 3.7. Plot3D of the
Equation (3.29)

FIGURE 3.8. Contour Plot of
the Equation (3.29)

u16(x, t) = c− 2bn

[
A− sinh(2

√
−b(ε + ξ0)) + cosh(2

√
−b(ε + ξ0))

A
√
−b +

√
b cosh(2

√
−b(ε + ξ0))−

√
−b sinh(2

√
−b(ε + ξ0))

]
(3.31)

u17(x, t) = c− 2bn

[
A + sinh(2

√
−b(ε + ξ0)) + cosh(2

√
−b(ε + ξ0))

−A
√
−b +

√
−b cosh(2

√
−b(ε + ξ0))−

√
−b sinh(2

√
−b(ε + ξ0))

]
(3.32)

Case-3:b = 0,

u18(x, t) = c + 2n
[
−1

(ε + ξ0)

]
(3.33)

Set-3: Here a0 = c and a1 = 2n and b1 = −2bn
Case-1: b > 0

φ =

√
(−A2 + B2)b− A

√
−b cosh(2

√
−b(ε + ξ0))

A sinh(2
√
−b(ε + ξ0)) + B

(3.34)

U(ε) = a0 + a1φ +
b1

φ
(3.35)

Now, Converting Variable: ε = x− ct.

u19(x, t) = c + 2n

[√
(−A2 + B2)b− A

√
b cos(2

√
b(ε + ξ0))

A sin(2
√

b(ε + ξ0)) + B

]

− 2bn

[
A sin(2

√
b(ε + ξ0)) + B√

(−A2 + B2)b− A
√

b cos(2
√

b(ε + ξ0))

]
(3.36)
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FIGURE 3.9. Plot3D of the
Equation U19(x, t)

FIGURE 3.10. Contour Plot of
the Equation U19(x, t)

u20(x, t) = c + 2n

[
−
√
(−A2 + B2)b− A

√
b cos(2

√
b(ε + ξ0))

A sin(2
√

b(ε + ξ0)) + B

]

− 2bn

[
A sin(2

√
b(ε + ξ0)) + B

−
√
(−A2 + B2)b− A

√
b cos(2

√
b(ε + ξ0))

]
(3.37)

u21(x, t) = c + 2n

[
ι
√
−b +

−2Aι
√
−b

A + cos(2
√
−b(ε + ξ0))− ι sin(2

√
−b(ε + ξ0))

]
(3.38)

− 2bn

[
A + cos(2

√
b(ε + ξ0)) + ι sin(2

√
b(ε + ξ0))

−ι
√

bA− ι
√

b cos(2
√

b(ε + ξ0)) + ι
√

b sin(2
√

b(ε + ξ0))− 2Aι
√

b

]
(3.39)

u22(x, t) = c + 2n

[
−ι
√
−b +

2Aι
√
−b

A + cos(2
√
−b(ε + ξ0)) + ι sin(2

√
−b(ε + ξ0))

]

− 2b

[
A + cos(2

√
b(ε + ξ0)) + ι sin(2

√
b(ε + ξ0))

−ι
√

bA− ι
√

b cos(2
√

b(ε + ξ0)) + ι
√

b sin(2
√

b(ε + ξ0)) + 2Aι
√

b

]
(3.40)

Case-2: b > 0.

φ =

√
(A2 + B2)b− A

√
b cosh(2

√
b(ε + ξ0))

A sinh(2
√

b(ε + ξ0)) + B
(3.41)

u23(x, t) = c + 2n

[
−
√
(−A2 + B2)b− A

√
−b cosh(2

√
−b(ε + ξ0))

A sinh(2
√
−b(ε + ξ0)) + B

]
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− 2bn

[
A sin(2

√
−b(ε + ξ0)) + B√

(−A2 + B2)b− A
√

b cos(2
√
−b(ε + ξ0))

]
(3.42)

u24(x, t) = c + 2n

[
−
√
(−A2 + B2)b− A

√
−b cosh(2

√
−b(ε + ξ0))

A sinh(2
√
−b(ε + ξ0)) + B

]

− 2bn

[
A sin(2

√
−b(ε + ξ0)) + B

−
√
(−A2 + B2)b− A

√
b cos(2

√
−b(ε + ξ0))

]
(3.43)

u25(x, t) = c + 2n

[
√
−b +

−2A
√
−b

A + cos(2
√
−b(ε + ξ0))− sin(2

√
−b(ε + ξ0))

]

− 2bn

[
A + sinh(2

√
−b(ε + ξ0)) + cosh(2

√
−b(ε + ξ0))

−A
√
−b +

√
−b cosh(2

√
−b(ε + ξ0))−

√
−b sinh(2

√
−b(ε + ξ0))

]
(3.44)

u26(x, t) = c + 2n

[
−
√
−b +

−2A
√
−b

A + cos(2
√
−b(ε + ξ0))− sin(2

√
−b(ε + ξ0))

]

− 2bn

[
A + sinh(2

√
−b(ε + ξ0)) + cosh(2

√
−b(ε + ξ0))

−A
√
−b−

√
−b cosh(2

√
−b(ε + ξ0))−

√
−b sinh(2

√
−b(ε + ξ0))

]
(3.45)

(3.46)

Case-3: b = 0,

u27(x, t) = c + 2n
[
−1

(ε + ξ0)

]
(3.47)

As it can be seen that unified method gives more than 49 solutions for the Burger’s

equation when account the positiveness or negativeness of values.

3.1. RESULTS AND DISCUSSIONS:

In this chapter, we have discussed the nature and physical significance of Burger’s equa-

tion. To study the physical characteristics, Burger’s equation is first solved by using the

Unified method which generates different solution sets. Then some of the solutions ob-

tained by different solution sets are plotted with multiwave 3D plots and contour plots

using Mathematica.

(1) Figure 11,12 : Plots of multiwave solution in (3.11) are presented via n = 3,

A = 1, B = 1.2, b = 5 ,ε = 0.2,c = 4 ,(1) multiwave 3D plot,(2) contour plot

respectively.
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FIGURE 3.11. Plot3D of the
Equation (3.47)

FIGURE 3.12. Contour Plot of
the Equation (3.47)

(2) Figure 13,14 : Plots of multiwave solution in (3.16) are presented via n = 3,

A = 1, B = 1.2, b = 5 ,ε = 0.2,c = 4 ,(1) multiwave 3D plot,(2) contour plot

respectively.

(3) Figure 15,16 : Plots of multiwave solution in (3.23) are presented via n = 3,

A = 1, B = 1.2, b = 5 ,ε = 0.2,c = 4 ,(1) multiwave 3D plot,(2) contour plot

respectively.

(4) Figure 17,18 : Plots of multiwave solution in (3.29) are presented via n = 3,

A = 1, B = 1.2, b = 5 ,ε = 0.2,c = 4 ,(1) multiwave 3D plot,(2) contour plot

respectively.

(5) Figure 19,20 : Plots of multiwave solution in (3.36) are presented via n = 3,

A = 1, B = 1.2, b = 5 ,ε = 0.2,c = 4 ,(1) multiwave 3D plot,(2) contour plot

respectively.

(6) Figure 21,22 : Plots of multiwave solution in (3.47) are presented via n = 3,

A = 1, B = 1.2, b = 5 ,ε = 0.2,c = 4 ,(1) multiwave 3D plot,(2) contour plot

respectively.





Chapter 4
Exact closed-form solutions of

(1+1)-dimensional longitudinal wave

equation

The objective of this work is to provide various soliton solutions for (1+1)-dimensional

longitudinal wave equation in magneto electro-elastic circular (MEEC) rod,

utt − r2uxx −
(

r2

2
u2 + nutt

)
xx

= 0, (4.1)

Where r is the wave velocity and n is the displacement parameter A travelling wave pulse

known as a soliton is the result of specific nonlinear partial differential equations. Due

to its exceptional stability characteristics, this particular wave may be used in numerous

significant applications. The study of wave propagation in one-dimensional systems has

been fundamental in understanding the behaviour of physical phenomena across var-

ious domains. Particularly, the investigation of longitudinal waves in rods has been of

great interest due to its relevance in materials science, seismology, and other areas of

physics. In recent years, the integration of theoretical concepts from Conformal Field

Theory (CFT) has enriched our understanding of wave behaviour, introducing intrigu-

ing elements such as the Modified Effective Central Charge (MECC).In the context of a

(1+1)-dimensional longitudinal wave equation for a rod with Modified Effective Central

Charge (MECC), we can describe the wave propagation in the rod using a wave equa-

tion. The wave equation typically used for longitudinal waves is a variation of the 1D

wave equation. We take into account wave propagation in a long MEE circular rod. Z

is along the rod direction, or the direction in which waves propagate, in the cylindrical

coordinate system. The following assumptions are made to aid our study:

• The rod’s cross-section remains plain both before and after the deformation.

33
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• The rod’s lateral surface has axial symmetry.

Wave propagation in magneto-electro elastic(MEE) media has been studied by numer-

ous researchers as a result of the expanding applications of MEE structures in various

engineering domains (such as actuators, sensors, etc.) over time .Using a modified

exp(−ω(ε))-expansion function approach, Baskonus et al. identified the hyperbolic

function and complex hyperbolic function solutions of the nonlinear longitudinal wave

equation (LWE) in a MEE circular rod. In their study of numerical solitary wave solu-

tions, Xue et al. used the dispersion caused by the transverse Poisson’s effect in a

MEE circular rod to derive the nonlinear LWE. The ansatz, modified (G’/G)-expansion,

and functional variable techniques are just a few of the innovative analytical solutions

of the LWE in a MEE circular rod that have been researched .Recently, Seadawy used

the extended trial equation method to find the soliton and other types of solutions of

nonlinear LWE in a MEE circular rod. The combination of piezoelectric BaTiO3 and

piezomagnetic CoFe2O4 with various values of the volume fraction (vf) of piezoelectric

BaTiO3 is the bodily meaning of nonlinear LWE in MEE circular rod. The rod’s radius

is given as r = 0.05 m. By comprehensively understanding the wave propagation in

magneto-electro-elastic circular rods, this research aims to contribute valuable insights

to the design and optimization of devices and systems that rely on these unique materi-

als. The results of this study have the potential to advance the development of innova-

tive applications in fields ranging from aerospace engineering to medical devices. In the

subsequent sections, we will detail the theoretical framework, mathematical derivations,

numerical simulations, and experimental validations to provide a holistic perspective on

the behaviour of longitudinal waves in magneto-electro-elastic circular rods. Ultimately,

this research strives to enhance our knowledge of these materials and facilitate their

broader utilization in emerging technologies.

4.1. APPLICATION OF THE (1+1)-DIMENSIONAL LONGITUDINAL WAVE EQUA-
TION

In this section, numerous exact-soliton solutions for a nonlinear system (4.1) are ad-

dressed by using the unified method which are discussed in the above section 2.

Applying the wave transformation

u(x, t) = U(X), with X = α1x− α2t, (4.2)
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in the (1+1)-dimensional longitudinal wave equation (4.1), we have

r2(U′2 + (1 + U)U′′) + α2
2nU(4) −

α2
2

α2
1

U′′ = 0. (4.3)

Integrating equation (4.3), two times with respect to X and neglecting the integration

constant, we obtained

α2
1α2

2nU′′ +
1
2

α2
1r2U2 + (α2

1r2 − α2
2)U = 0. (4.4)

4.2. SUMMARY OF THE UNIFIED METHOD AND ITS APPLICATION

Implementing balancing principle on U′′ and U2 of the above ODE (4.4) to find the value

M, we have 2M = M + 2 implies M = 2. Consequently, equation (1.4) transform as

U(X) = K0 + K1 f (X) + K2 f (X)2 +
L1

f (X)
+

L2

f (X)2 . (4.5)

Substituting equation (4.5) into (4.4) with the Riccati equation (1.5) and succeeding the

main steps of the employed method, that gives several kind of solution sets. Here, we

consider some sets of solutions to derive the exact solitary wave solutions of (4.1) via

the computational software Mathematica.

4.2.1. Solution Set: Set-1:

K0 = −
4α2

2Mn
r2 , K1 = 0, K2 = −

12α2
2n

r2 , L1 = 0, L2 = 0, α1 =
α2√

4α2
2Mn + r2

,

(4.6)

Making use of equation (4.5), and equation (4.6), the desired solution of the (1+1)-

dimensional longitudinal wave equation obtained in the following cases,

Case-1: Hyperbolic function solutions (when M < 0 )

u11(x, t) = −
4α2

2 n
r2

M +

3
(√
−(β2 + γ2)M− β

√
−M cos

(
2
√

M Ξ1

))2

(
β sinh

(
2
√
−M Ξ1

)
+ γ

)2

 ,

(4.7)

u12(x, t) = −
4α2

2 n
r2

M +

3
(√
−(β2 + γ2)M + β

√
−M cos

(
2
√

M Ξ1

))2

(
β sinh

(
2
√
−M Ξ1

)
+ γ

)2

 .

(4.8)
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FIGURE 4.1. Evolutionary profile dynamics of the solution (4.7).

u13(x, t) =
4α2

2Mn
r2

3

 2β

exp
(
−2
√
−M

(
α2x√

4α2
2Mn+r2

− α2t + φ

))
+ β

+ 1


2

− 1

 ,

(4.9)

u14(x, t) =
4α2

2Mn
r2

3

 2β

exp
(
−2
√
−M

(
α2x√

4α2
2Mn+r2

− α2t + φ

))
+ β

− 1


2

− 1

 .

(4.10)
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FIGURE 4.2. Evolutionary profile dynamics of the solution (4.8).
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Case-2: Trigonometric function solutions (when M > 0 )

u15(x, t) = −
4α2

2n
r2

3
(√

M (β2 + γ2)−
√

Mβ cos
(

2
√

M Ξ1

))2

(
β sin

(
2
√

M Ξ1

)
+ γ

)2 + M

 , (4.11)

u16(x, t) = −
4α2

2n
r2

3
(√

Mβ cos
(

2
√

M Ξ1

)
+
√

M (β2 + γ2)
)2

(
β sin

(
2
√

M Ξ1

)
+ γ

)2 + M

 , (4.12)
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FIGURE 4.3. Evolutionary profile dynamics of the solution (4.11).

u17(x, t) =
4α2

2Mn
r2

−1 + 3

1 +
2β

β + e
−2i
√

M

(
α2x√

4α2
2Mn+r2

−α2t+φ

)


2
 , (4.13)

u18(x, t) =
4α2

2Mn
r2

−1 + 3

1− 2β

β + e
−2i
√

M

(
α2x√

4α2
2Mn+r2

−α2t+φ

)


2
 . (4.14)

Case-3: Rational function solutions (when M = 0 )

u19(x, t) =
4α2

2n
r2

− 3(
α2x√

4α2
2Mn+r2

− α2t + φ

)2 −M

 . (4.15)

where Ξ1 =
α2 x√

4α2
2Mn + r2

− α2 t + φ.

Set-2:
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FIGURE 4.4. Evolutionary profile dynamics of the solution (4.14).

K0 = −
12α2

2Mn
r2 , K1 = 0, K2 = 0, L1 = 0, L2 = −

12α2
2M2n
r2 , α1 =

α2√
r2 − 4α2

2Mn
.

(4.16)

Making use of equation (4.5), and equation (4.16), the desired solution of the (1+1)-

dimensional longitudinal wave equation obtained in the following cases,

Case-1: Hyperbolic function solutions (when M < 0 )

u21(x, t) = −
12α2

2Mn
r2

 M
(

β sinh
(
2
√
−M Ξ2

)
+ γ

)2(√
−M (β2 + γ2)−

√
−Mβ cos

(
2
√

M Ξ2

))2 + 1

 ,

(4.17)

u22(x, t) =
12α2

2Mn
r2

−1−
M
(

β sinh
(
2
√
−M Ξ2

)
+ γ

)2√
−M (β2 + γ2)−

(√
−Mβ cos

(
2
√

M Ξ2

))2

 ,

(4.18)

u23(x, t) =
12α2

2Mn
r2


 2β

exp
(
−2
√
−M

(
α2x√

r2−4α2
2Mn
− α2t + φ

))
+ β

+ 1


−2

− 1

 ,

(4.19)
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u24(x, t) =
48α2

2Mnβe
2
√
−M

(
α2x√

r2−4α2
2Mn
−α2t+φ

)

r2

βe
2
√
−M

(
α2x√

r2−4α2
2Mn
−α2t+φ

)
− 1


2 . (4.20)

Case-2: Trigonometric function solutions (when M > 0 )
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FIGURE 4.5. Evolutionary profile dynamics of the solution (4.19).

u25(x, t) = −
12α2

2Mn
r2

 M
(

β sin
(

2
√

M Ξ2

)
+ Q

)2

(√
M (β2 + γ2)−

√
Mβ cos

(
2
√

M Ξ2

))2 + 1

 (4.21)

u26(x, t) = −
12α2

2Mn
r2

 M
(

β sin
(

2
√

M Ξ2

)
+ γ

)2

(√
Mβ cos

(
2
√

M Ξ2

)
+
√

M (β2 + γ2)
)2 + 1

 , (4.22)

u27(x, t) = −
12α2

2Mn
r2

1 +

 2β

β + e
−2i
√

M

(
α2x√

r2−4α2
2Mn
−α2t+φ

) + i


−2
 , (4.23)

u28(x, t) =
12α2

2Mn
r2


1 +

2β

sin
(

2
√

M Ξ2

)
− cos

(
2
√

M Ξ2

)
− β

−2

− 1

 .

(4.24)
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Case-3: Rational function solutions (when M = 0 )

u29(x, t) = −
12α2

2Mn
r2

M

 α2x√
r2 − 4α2

2Mn
− α2t + φ

2

+ 1

 . (4.25)

where Ξ2 =

 α2x√
r2 − 4α2

2Mn
− α2t + φ

 .

4.3. RESULTS AND DISCUSSION

In this section, we discuss the behavior and physical characteristics of some obtained

solutions graphically using the modern Mathematical tool Mathematica. These solutions

were obtained by using a powerful and effective unified method. The newly reported so-

lutions show the different graphical behavior of the (1+1)-dimensions longitudinal wave

equation. These solutions involve exact soliton solutions, fractional solutions, kink-wave

soliton solutions, traveling wave solutions, singular-soliton solutions, periodic wave solu-

tions, particular solutions, and w-shaped wave soliton solutions. A graph is an illustrated

description of explicit solutions and is naturally drawn for comparison purposes.

Figure 4.1: Evolutionary profile dynamics of the solution (4.7) at α2 = 2, r = 5, n =

1, M = −1, β = 0.1, γ = 0.2, and φ = 0.22 under the range space −20 ≤ x ≤
20, −20 ≤ t ≤ 20 and figure (c) shows wave propagation with different value of

t = {1, 1.12, 1.23}.
Figure 4.2: Evolutionary profile dynamics of the solution (4.8) at α2 = 5, r = 11, n =

0.9, M = −5, β = 1, γ = 2, and φ = 0.3 under the range space −20 ≤ x ≤
20, −20 ≤ t ≤ 20 and figure (c) shows wave propagation with different value of

t = {1.2, 1.2, 2}.
Figure 4.3: Evolutionary profile dynamics of the solution(4.11) at α2 = 1.2, r = 1.1, n =

11, M = 0.02, β = 0.22, γ = 0.5, φ = 0.011 under the range space −20 ≤ x ≤
20, −20 ≤ t ≤ 20 and figure (c) shows wave propagation with different values of

t = {1, 4, 7}
Figure 4.4: Evolutionary profile dynamics of the solution (4.14) at α2 = 1.2, r = 2, n =

3, M = 0.3, β = 0.22, φ = 0.2 under the range space −20 ≤ x ≤ 20, −20 ≤ t ≤ 20
and figure (c) shows wave propagation with different values of t = {1.2, 1.22, 1.25}.
Figure 4.5: Evolutionary profile dynamics of the solution (4.19) at α2 = 2, r = 2, n =

1.3, M = −0.12, β = 0.2, φ = 1.2 under the range space −5 ≤ x ≤ 5, −5 ≤ t ≤ 5
and figure (c) shows wave propagation with different values of t = {1, 2, 3}.



Concluding remarks

Most of the partial differential equations do not lead to a general solution, however,

A powerful and effective unified method is used to reduce the given nonlinear equa-

tion to obtain differential equations. Such equation yield a family of the solitary waves,

traveling waves and group invariant solutions of governing equation under considera-

tion. Chapter 2, 3 and Chapter 3 utilized the unified method to attain the abundant

exact solitary wave solutions and rational solutions to the the (1+1)-dimension Lonngren

Equation, the (1+1)-dimensional Burger’s Equation, the (1+1)-dimensional longitudinal

wave equation. Our analytic results, obtained in this article are entirely novel and not yet

published somewhere else. Furthermore, the method used in this chapter is a straight-

forward, effective, and productive technique in seeking the exact solitary wave solutions

for many NLPDEs. We provided several interesting 3D, 2D-graphics, and respective

density plots expressing the dynamical behavior of achieved solutions of the equations

which give some structural information about how the behavior solutions are generated.

Besides this, among the solutions, generalized rational solutions imply that these exact

solitary wave solutions have rich local structures. Moreover, these solitary wave solu-

tions will be useful to study analytically other nonlinear partial differential equations in

plasma physics, nonlinear dynamics, materials physics, mathematical physics, applied

sciences, and engineering. Consequently, our results have been verified with the aid of

the symbolic computation via Mathematica by putting them back into the original equa-

tion.
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