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1. ABSTRACT

Heterocyclic compounds, characterized by the presence of heteroatoms within their cyclic
structures, are of significant importance in biology and medicine. Among them,
1,2,3-triazole, a five-membered ring compound with three nitrogen atoms, is highly
versatile and reactive, finding applications in drug discovery, click chemistry, coordination
chemistry, catalysis, and materials science.
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Computer-Aided Drug Design (CADD) is a powerful computational approach that
revolutionizes pharmaceutical research. In a recent study, researchers used CADD
techniques to identify potential oral anti-tubercular compounds. They analyzed 31
different compounds containing 1,2,3-triazole analogs, employing methods like
CoMFA/CoMSIA modeling, molecular docking, and ADMET analysis. These techniques
led to the discovery of a promising compound, Al, with favorable properties for
tuberculosis treatment. This study underscores the value of computational tools in
predicting novel therapeutic agents, providing valuable insights for drug discovery.
1,2,3-triazole, also known as triazole, is a significant five-membered heterocyclic
compound featuring three nitrogen atoms and two carbon atoms in its ring structure,
denoted by its chemical formula C2H3N3. Its nomenclature, with the "1,2,3" indicating
the positions of the nitrogen atoms in the ring, underscores its chemical identity. Originally
synthesized by German chemist Kurt H. Meyer in 1883, this discovery was part of the
broader exploration of nitrogen-containing compounds in the late 19th century. Notably,
there are other triazole isomers, such as 1,2,4-triazole and 1,2,3,4-tetrazole, with distinct
nitrogen atom arrangements within the ring. The versatility and reactivity of 1,2,3-triazole
and its derivatives have sparked widespread interest and utility across various scientific
domains
In this study, researchers employed computer-aided drug design techniques to identify
promising oral anti-tubercular compounds. They analyzed 31 different compounds
containing 1,2,3-triazole analogues using 3D-QSAR modeling and molecular docking. The
validation of CoMFA/CoMSIA models demonstrated their statistical reliability, and
contour maps derived from these models guided the development of potent molecules with
strong anti-tubercular activity. Molecular docking was then utilized to investigate the
binding mechanisms between these molecules and the Mycobacterium tuberculosis (MTB)
receptor. Additionally, an in silico ADMET study identified a promising compound, Al,
with favorable properties, suggesting its potential as an effective ligand for tuberculosis
treatment. In essence, this research wunderscores the value of well-optimized
CoMFA/CoMSIA models, molecular docking, and ADMET analysis in predicting novel
anti-tubercular agents, providing valuable insights for the discovery of new analogues with
therapeutic potential.

CHAPTER-11
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2.  INTRODUCTION

2.1. HETEROCYCLIC COMPOUNDS

Heterocyclic compounds are indeed a crucial class of organic compounds with diverse
applications, especially in the field of biology and medicine. These compounds contain at
least one heteroatom (an atom other than carbon) within their cyclic structure, and



PAGE \* MERGEFORMAT
17

common heteroatoms include nitrogen, oxygen, and sulfur. Here are some additional

details and examples of the importance of heterocyclic compounds in various biological

and medicinal contexts:

1. Biological Molecules: Heterocyclic rings are essential components of many

biological molecules. For example:

e DNA and RNA: The purine and pyrimidine bases (adenine, guanine, cytosine,
thymine, and uracil) in DNA and RNA contain heterocyclic rings.

e Chlorophyll: This green pigment responsible for photosynthesis in plants contains a
large heterocyclic ring.

e Haemoglobin: Haemoglobin, the protein responsible for transporting oxygen in our
blood, contains a porphyrin ring with heterocyclic structures.

e Vitamins: Several vitamins, such as vitamin B1 (thiamine), vitamin B2 (riboflavin),
and vitamin B3 (niacin), contain heterocyclic rings in their structures.

2. Medicinal Applications: Heterocyclic compounds are widely used in the

pharmaceutical industry due to their diverse biological activities. For example:

e Triazine Derivatives: These compounds have been used as antimicrobial herbicides,
urinary antiseptics, and anti-inflammatory agents.

e Benzimidazole Derivatives: Benzimidazole compounds exhibit a wide range of
biological activities, including antibacterial, antifungal, antiviral, and anthelmintic
properties.

3. Drug Development: Many drugs, both prescription and over-the-counter, contain

heterocyclic moieties in their structures. These heterocyclic rings often play a crucial role

in the drug's mechanism of action.

4. Diversity of Structures: Heterocyclic compounds offer a wide range of structural

diversity, allowing medicinal chemists to design molecules with specific biological

properties.

5. Research and Innovation: Ongoing research in the field of heterocyclic chemistry

continues to uncover new compounds with potential applications in treating various

diseases and conditions.

In summary, heterocyclic compounds are indeed vital in the field of organic chemistry,

biology, and medicine. Their diverse structures and biological activities make them

indispensable for drug discovery, the development of new therapeutic agents, and the
understanding of essential biological processes.
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Figure- 1. Structures of the some heterocyclic compounds

Heterocyclic compounds can be categorized into two main groups: aliphatic and aromatic.
These compounds typically comprise small rings, with some having 3- or 4-membered
rings, but the most common ones consist of 5 to 7-membered ring systems. Heterocyclic
compounds are essential in the metabolic processes of all living cells, and a significant
portion of them falls into the category of 5 and 6-membered rings, often containing 1 to 3
heteroatoms within their structures. (Fig -1)

2.2. COMPUTER AIDED DRUG DISCOVERY

The process of discovering and creating new medications is intricate, lengthy, expensive,
and fraught with risks, making it a unique challenge in the business world. Consequently,
the pharmaceutical industry has increasingly turned to computer-aided drug design
(CADD) methods to expedite this process. The cost savings derived from employing
computational tools during the lead optimization phase of drug development are
substantial. On average, it takes 10-15 years and an investment of $500-800 million to
bring a drug to market, with the synthesis and testing of lead analogues constituting a
significant portion of this expenditure.

Therefore, utilizing computational tools in the hit-to-lead optimization stage proves
advantageous as it enables the exploration of a broader chemical landscape while
simultaneously reducing the number of compounds necessitating synthesis and in vitro
testing.

Computational approaches to drug design are grounded in the idea that biologically active
compounds exert their effects by interacting with specific macromolecules, primarily
proteins or nucleic acids. The primary elements influencing these interactions encompass
molecular surfaces, electrostatic forces, hydrophobic interactions, and the formation of
hydrogen bonds. These critical factors take precedence when assessing and forecasting the
interaction between two molecules].

Computer-aided drug design (CADD) is a technological approach that utilizes computers
to create and record the design of a product while documenting the various steps involved
in the design process (Fig-2). CADD plays a role in streamlining the manufacturing
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process by conveying precise schematics encompassing a product's materials,
manufacturing methods, allowable variances, and specific measurements, all following
established conventions tailored to the particular product under consideration?.

CADD
__..A_._
Disease-related Target Lead Lead Preclinical
genomics identification discovery optimization tests
+Bioinformatics ~ * Target *Library design  + QSAR * In silico ADMET
* Reverse docking  druggability ~ *Docking scoring  « 3D-QSAR prediction
* Protein structure  * Tool compound  * De novodesign s Structure-based « Physiologically-based
Prediction design * Pharmacophore  optimization pharmacokinetic (PBPK)
* Target flexibility simulations

Figure 2- In silico Computer-aided drug design

from various origins, including natural sources such as plants, animals, and
microorganisms, as well as through chemical synthesis. These compounds may be
excluded from further consideration due to factors like their absence or low activity,
potential toxicity or carcinogenic properties, the complexity of synthesis, or inadequate
efficacy.

compsounds R LR
Random Clinical
Screening Drug Pre - Phase
10,000 = e . Candidt  Clinical = (Phase = Market
20,000 ae phase 1, 1L, 1,
compounds w)

[ =1 Billion dollacrs -3

Figure 3- Traditional drug research and development procedure
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Consequently, out of every 100,000 compounds investigated, only one typically advances
to market, and the average cost of developing a new drug has surged to $800 million. The
prospects for reducing the time and expenses associated with the final stages of drug
testing are limited due to stringent regulatory standards (Fig-3). Therefore, the primary
efforts to enhance drug development efficiency are focused on the discovery and
optimization of ligands®.

Figure 4 -General principle for drug design through

CADD

Incorporating in silico methods can play a pivotal role in this endeavour. These methods
can aid in the identification of drug targets through the use of bioinformatics tools.

Furthermore, they enable the analysis of target structures to identify potential binding or
active sites, facilitate the generation of candidate

molecules, assess their suitability, facilitate the docking of these molecules with the target,
rank them based on their binding affinities, and even optimize the

molecules to enhance their binding characteristics(fig-4). Computers and computational
techniques have become integral to all facets of drug discovery today, forming the core of
both structure-based drug design and ligand-based drug design®.

e Structure-Based Drug Design (SBDD): Structure-based drug design is an
essential technique employed in the field of drug development(fig-5). It plays a pivotal
role in the process of discovering novel drugs’.
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Figure 5- Structure-based drug design

o Ligand-Based Drug Design (LBDD):
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Ligand-based drug design revolves around the examination of ligands that are recognized
to interact with a specific target6. These methods rely on a collection of reference
structures derived from compounds with established interactions with the target of interest,
and they analyse the two-dimensional (2D) or three-dimensional (3D) structure of these
ligands(fig-6)’. In cases where data regarding the 3D structure of a target protein are
unavailable, drug design can instead be based on a process that utilizes known ligands of
the target protein as the starting point8. This approach is referred to as "ligand-based drug
design.9”

2.3 123 TRIAZOLE

1,2,3-triazole, also known as triazole, is a five-membered heterocyclic compound
containing three nitrogen atoms and two carbon atoms in its ring structure. It has the
chemical formula C2H3N3 and is an important chemical moiety in various organic
compounds and pharmaceuticals.The "1,2,3" in its name indicates the positions of the
nitrogen atoms within the ring, with nitrogen atoms at positions 1, 2, and 3 (fig-7).

1,2,3-triazole was first synthesized and reported by the German chemist Kurt H. Meyer in
1883. Its discovery was part of the broader exploration of various nitrogen-containing
compounds and heterocycles by chemists in the late 19th century.There are other isomers
of triazole, including 1,2,4-triazole and 1,2,3,4-tetrazole, which have different
arrangements of nitrogen atoms in the ring.1,2,3-triazole and its derivatives have captured
significant interest in a wide range of scientific and practical areas. In medicinal chemistry,
they play a crucial role in drug discovery, particularly as potential anti-cancer,
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antimicrobial, and antiviral agents. Their versatile reactivity has made them central to click
chemistry, a powerful tool for bioconjugation, molecular probe development, and the
creation
of tailored materials in fields like materials science and supramolecular chemistry.
Furthermore, 1,2,3-triazoles are instrumental as ligands in coordination chemistry and
catalysis. They find applications in molecular biology, environmental chemistry for
pollution detection, and as building blocks for organic synthesis. The unique electronic
and optical properties of 1,2,3-triazole-containing materials have made them valuable in
materials science and organometallic catalysis. Overall, the diverse and evolving
applications of 1,2,3-triazoles continue to expand our understanding and capabilities in
various scientific disciplines.

Figure- 7 Structurg;of,1,2,3 Tgiazalere or

1.2.3 Triazole

Figure- 7 Structure of 1,2,3 Triazole
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Computer-aided drug design methods to identify novel 1,2,3-triazole analogues
as potential anti-tubercular agents and to evaluate their pharmacokinetic and
toxicity profiles. The study aims to contribute to the development of more
effective treatments for tuberculosis.

m OBJECTIVE :

- To identify novel 1,2,3-triazole analogues as potential anti-tubercular agents
- To use computer-aided drug design methods to guide the discovery of new
anti-tubercular agents

- To develop 3D QSAR and CoMFA/CoMSIA models to predict the
anti-tubercular activity of triazole analogues
- To perform molecular docking studies to investigate the binding modes of the
proposed drugs with the target protein
- To conduct in silico ADMET screening to evaluate the pharmacokinetic and
toxicity profiles of the proposed drugs
- To highlight the potential of these methods to accelerate the discovery of new
anti-tubercular agents

- To contribute to the development of more effective treatments for
tuberculosis, a major global health challenge.

3.1 1.2.3 TRIAZOLE-ANTI-TUBERCULAR AGENTS ACTIVITY
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In this report, we focus on a review of antitubercular activity of 1,2,3 Triazole
derivatives. Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB),
remains the leading cause of death among infectious diseases globally. The
World Health Organization (WHO) reported that over one-third of the world's
population is infected with TB, resulting in an estimated 1.5 million deaths in
2013'. Notably, 0.36 million individuals were co-infected with HIV and TB,
complicating treatment. Prolonged therapy often leads to noncompliance and
the emergence of drug-resistant TB forms like multidrug-resistant tuberculosis
(MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB). These
drug-resistant strains are highly lethal, costly to treat, and challenging to
manage. Despite effective anti-TB drugs like isoniazid and rifampicin, MTB
has developed resistance to both first-line and second-line drugs. Hence, there
is an urgent need for new inhibitors to simplify treatment regimens, reduce
complexity, and effectively combat drug-resistant TB, addressing a critical
challenge in TB prevention, treatment, and control'.

Hence, a pressing imperative exists to create novel inhibitors that not only
simplify the intricacies and duration of existing therapeutic regimens but also
demonstrate efficacy in addressing multidrug-resistant (MDR) and extensively
drug-resistant (XDR) tuberculosis cases.Oxidative stress is a major driver of
tissue inflammation in tuberculosis. During the illness, poor dietary intake of
micronutrients triggers the release of free radicals from activated macrophages
and anti-tuberculosis medications. Without adequate antioxidants to neutralize
these free radicals, pulmonary inflammation ensues'’. Antioxidants work by
either scavenging or preventing the generation of reactive oxygen species
(ROS), effectively shielding against free radical formation and consequently
retarding the progression of pulmonary inflammation'’.

The compound known as 1,2,3-triazole has garnered significant scientific
interest due to its fascinating physical and biological properties, as well as its
impressive stability, making it a highly promising building block for drug
development. Within the realm of synthetic organic chemistry, the 1,3-dipolar
cycloaddition reaction, involving the interaction of a 1,3-dipole with a
dipolarophile (such as an acetylene or alkyne) to create five-membered
heterocyclic compounds, is a well-established process.
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In recent times, research teams led by notable scientists like Sharpless and
Meldal have achieved groundbreaking advancements in this field. They
havesignificantly accelerated reaction rates, by up to 107 times, while
simultaneously enhancing the selectivity of the Huisgen 1,3-dipolar
cycloaddition reaction.

This reaction entails the combination of an organic azide with a terminal

acetylene to produce 1,4-disubstituted-1,2,3-triazole compounds, employing a
copper (I) catalyst.The Cu (I)-catalyzed azide-alkyne cycloaddition (CuAAC)
reaction has emerged as a cornerstone of "click chemistry," aligning with the
criteria set by Sharpless. Over the past few years, it has become an
indispensable component of synthetic organic chemistry, offering exciting
prospects for the development of novel compounds and potential drug
candidates.
In recent years, 1,2,3-triazoles have gained considerable importance as a
versatile class of compounds with a broad spectrum of biological applications.
These applications encompass a wide array of functions, including their
effectiveness against tuberculosis, bacteria, allergies, HIV, and fungi, as well as
their role as inhibitors of a-glycosidase.Due to their remarkable properties,
multiple methods for synthesizing 1,2,3-triazole compounds have been
developed. Among these approaches, one of the most elegant and practical
methods is the Huisgen 1,3-dipolar cycloaddition reaction involving azides and
alkynes.Recent research endeavors have led to the creation of a diverse range
of derivatives featuring conjugated 1,2,3-triazoles, demonstrating various
biological activities. For example, certain 1,4-disubstituted 1,2,3-triazole
derivatives(A AND B) (fig-8) have exhibited potent inhibitory effects against
the MTB H37Rv strain. Similarly, compounds combining 1,2,3-triazoles with
fluorine-containing benzimidazole(C) have shown promise as inhibitors of the
H37Rv strain. Furthermore, 1,2,3-triazole-based (D) compounds have
demonstrated effectiveness against various pathogenic and opportunistic
Mycobacteria, including M. avium and MTB. Additionally, a derivative based
on 1,2,3-triazoles derived from isoniazid (E)has displayed noteworthy
anti-tubercular activity against MTB H37Rv (fig-8), representing a significant
advancement in the quest for effective tuberculosis treatments.
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Figure-8 1,2,3-triazole derivatives

In our research, we've employed Quantitative Structure-Activity Relationship
(QSAR) modeling, a crucial tool in modern medicinal chemistry. QSAR aims
to link the biological activity of chemicals to their physical and structural
properties. It operates on the principle that similar structures tend to have
similar properties, making it easier to establish connections between the
properties and activities of closely related molecules'’. However, as structural
differences between molecules increase, correlating their properties and
biological activities becomes more challenging. In our work, we've applied
QSAR to molecular modeling and drug design, utilizing computational
chemistry tools to predict various biological outcomes and shed light on
reaction mechanisms, whether they are toxicological or pharmacological. Our
use of QSAR holds great potential for the development of novel and potent
drugs for diverse applications'.

In this research, we conducted Comparative Molecular Field Analysis
(CoMFA)"® and Comparative Molecular Similarity Indices Analysis
(CoMSIA)' to forecast the activity of 31 triazole compounds, which were
sourced from existing literature and have demonstrated anti-tubercular
potential'”. The objective was to identify promising candidates for new and
effective drugs against Mycobacterium tuberculosis (MTB) strains. We utilized
Surflex-Docking to assess the stability of these newly proposed agents within
the MTB receptor (PDB entry code: SUHS5) and to investigate their interactions
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with specific receptor residues. Furthermore, we conducted in silico studies on
absorption, distribution, metabolism, excretion, and toxicity (ADMET) to

assess the pharmacokinetic properties of the most promising anti-tubercular
drug candidates.
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4. MATERIALS AND METHODOLOGY

Molecular docking is one of the most frequently used methods in
structure-based drug design, due to its ability to predict the
binding-conformation of small molecule ligand to the appropriate target
binding. The performances of available docking software like ChemSketch, ,
Protein Data Bank,Discover studio, swissadme, preadmet and Autodock are
discussed.

In this study, we compiled a database consisting of 31 compounds, specifically
1,2,3-triazole derivatives with potential anti-tubercular activity. To facilitate
model evaluation, we divided this dataset into two subsets:

1. 25 compounds formed the training set

1. 6 compounds comprised the test set.

The selection of compounds for these sets was done randomly. The structural
details and corresponding biological activities for both the training and test sets
can be found in Table 1. It's worth noting that the MIC (Minimum Inhibitory
Concentration) activity, originally measured in pg ml-1, was converted into
micromolar values (ug ml-1) and then recalculated into pMIC values using the
logarithmic function log(1/MIC). These pMIC values, as listed in Table 1,
served as the dependent variables in all subsequent Partial Least Squares (PLS)
modeling efforts.To construct 3D-QSAR models (specifically CoMFA and
CoMSIA), we employed three-dimensional structure building techniques (as
shown in Fig. 1) and carried out optimizations using the Sybyl 2.0 program
package. Additionally, we visualized molecular interactions with the receptor
using Discovery Studio Visualizer and MOLCAD (Molecular Computer Aided
Design) software.For a comprehensive assessment of the compounds, we
determined their ADMET properties (Absorption, Distribution, Metabolism,
Excretion, and Toxicity) using Admetsar and pKCSM predictors. These
analyses provide insights into the pharmacokinetic properties and potential
toxicity of the compounds, further contributing to our understanding of their
suitability as anti-tubercular agents.
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4.1 Minimization and Alignment

In this study, molecular structures were initially sketched using the sketch
module in SYBYL. These structures were then optimized using the Tripos
force field with Gasteiger-Huckel charges. The optimization process employed
the conjugated gradient method with a gradient convergence criteria set at 0.01
kcal mol”-1. Subsequently, simulated annealing was performed on the
optimized structures, and this process involved 20 cycles to refine the
structures further.Molecular alignment is a crucial step in 3D-QSAR
(3-Dimensional Quantitative Structure-Activity Relationship) analyses.

In this study, all the molecules were aligned based on a common core structure:
C(OC1=CC=CC=C1)C1=CN(N=N1)C1=CC=CC=C1. This alignment was
achieved using a simple alignment method available in SLYBY. Compound
13,

which was identified as the most active compound, served as the template for
the alignment.The superimposed structures resulting from this alignment
process are visually represented in Figure 2. Overall, this research utilized
computational methods to prepare and align molecular structures for further
analysis in the context of 3D-QSAR, with a focus on identifying the most
active compound as a reference for alignment.

4.2 3D QSAR Studies

To gain insights into and investigate the roles of electrostatic, steric, and
hydrophobic characteristics within various compounds from the dataset, as well
as to develop predictive 3D Quantitative Structure-Activity Relationship
(QSAR) models, CoMFA (Comparative Molecular Field Analysis) and
CoMSIA (Comparative Molecular Similarity Indices Analysis) studies were
conducted. These studies were conducted in accordance with a previously
established molecular alignment strategy outlined in existing literature "°.

4.3 CoMFA AND CoMSIA

Based on the previously described molecular alignment, the CoMFA
(Comparative Molecular Field Analysis) and CoMSIA (Comparative
Molecular Similarity Indices Analysis) studies were conducted to dissect and
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analyze the specific impacts of steric, electrostatic, and hydrophobic effects on
the dataset of compounds.
In CoMFA, the method allowed for the computation of steric and electrostatic
properties using the Lennard-Jones and Coulomb potentials, respectively.
These properties were evaluated at discrete grid points regularly spaced at 2.0
A intervals. A maximum steric and electrostatic energy cutoff of 30 kcal
mol”-1 was set as a default threshold '°. Regression analysis was performed
using the full cross-validated partial least squares (PLS) method with a
leave-one-out
approach . The sigma value (column filtering) was set to a minimum of 2.0
kcal mol”-1 to improve the signal-to-noise ratio by excluding lattice points
with energy variations below this threshold. The final non-cross-validated
model was constructed using an optimal number of components, determined by
the highest Q2 value and the smallest standard error predictions. To assess the
predictive capability of the CoMFA model, the predictive r2 was employed,
focusing solely
on the test set. Multiple CoMFA models were generated by varying
permutations of molecules between training and test sets, and the best model
was selected based on high Q2 and r2 values, as well as a small Standard Error
of Estimate (SEE) value.
In CoMSIA, a distance-dependent Gaussian-type physicochemical property
was utilized to prevent singularities at atomic positions and abrupt changes in
potential energy near the molecular surface. Five fields corresponding to five
physicochemical properties were computed without imposing arbitrary cutoff
limits. These properties included steric (S), electrostatic (E), hydrophobic
(H), hydrogen bond donor (D), and acceptor (A) indices. The steric
contribution was represented by the third power of atomic radii, while
electrostatic  descriptors were derived from atomic partial charges.
Hydrophobic fields were based on atom-based parameters developed by
Viswanadhan, and hydrogen bond donor and acceptor indices were determined
using a rule-based method derived from experimental data '*.
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Table 1. Anti-tubercular and Predicted Activities of 1,2,3-Triazole Derivatives



PAGE \* MERGEFORMAT

17
CoMEA CoMSLA

MNo. pNIC® Predicted Residuals Predicted Residuals
| 4 55 4 499 0.051 4 573 -0.023
2 4 .52 4 562 =002 4 625 -0 105
*3 4 52 4519 0.001 4511 0009
4 4 55 4 577 -0.027 4 695 -0_145
3 4 54 4 559 -0.019 4 705 -0_165
*6 452 4 346 0.174 4. 533 -0.013
7 4 52 4 536 -0.016 4675 -0_155
B 461 4 553 0.057 4. 722 -0.112
o 4 54 4 482 0058 4. 7035 -0_165
10 452 4 476 0044 4. 720 -02
11 4 56 4 809 -0249 4721 -0.161
*12 4 53 4718 -0_188 4521 -0.009
13 508 5002 0.078 4. 754 0.326
*14 4 59 4281 -0.691 4 562 0.028
15 523 5096 0.134 4 T57T 0.473
16 4 4 070 -0.07 4 007 =07
*17 4 52 4234 0.286 4516 000
18 4 4. 106 -0 106 4 036 -0.036
19 4 3876 0.124 3973 0.027
20 4 4033 -0.033 4 009 -0.009
21 4 55 4 347 0.203 4 432 0118
22 4 52 4 501 0.019 4 446 0.074
23 4 57 4 622 -0.052 4 499 0.071
24 4 52 4 TOR -0_188 4513 0007
*25 452 4721 -0201 4 539 -0.019
26 4 .52 4 600 -0.08 4516 0003
27 511 4 849 0.261 4 649 0.461
28 4 52 4 582 -0.062 4 594 -0.074
29 4 55 4. 734 -0_ 184 4 637 -0.087T
30 4 52 4 436 0.084 4 565 -0 045

31 4 52 4. 503 0017 4 593 -0.073
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Fig.9 . Chemical structure of the studied compounds.
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Fig.10 . 3D-QSAR structure superposition and alignment of training set using molecule 13 as a
template.
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4.4 PLS Analysis

The 3D-QSAR models in this study were developed using the Partial Least
Squares (PLS) statistical method, as described in reference’. PLS is an
extension of multiple regression analysis, where the original variables are
replaced by a smaller set of linear combinations. To determine the optimal
number of components for the PLS models, a leave-one-out (LOO)
cross-validation approach was employed, with the cross-validated coefficient
Q2 used as the criterion.

For external validation of the various models, a test set consisting of five
molecules was utilized. In the final analysis, which was not cross-validated, the
optimal number of components obtained from the cross-validation phase was
applied to calculate the correlation coefficient (R2).

The Q2 value serves as an indicator of the internal predictive ability of the
model, while the R2 value assesses the internal consistency of the model %,
The selection of the best QSAR model was based on a combination of high Q2
and R2 values, signifying both good internal predictive ability and internal
model consistency.

4.5 Y-Randomization Test

To further validate the obtained models, the Y-Randomization method was
applied as described in reference [21]. In this method, the Y wvector,
representing the logarithm of MIC (Minimum Inhibitory Concentration), was
randomly shuffled multiple times, creating new datasets for each iteration.
Subsequently, new QSAR models were developed based on these shuffled Y
vectors. It 1s anticipated that these new QSAR models would generally exhibit
lower Q2 and R2 values compared to the original models.

The primary purpose of this technique is to assess whether the observed
correlation in the original models 1s due to chance or if it genuinely reflects a
meaningful relationship. If the new QSAR models consistently yield higher Q2
and R2 values, it suggests that it is challenging to generate a reliable 3D-QSAR
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model for this dataset due to structural redundancy and potential chance
correlations. In such cases, it becomes crucial to recognize the limitations of
the dataset and the possibility that the observed relationships may not be
statistically significant.

4.6 Molecular Docking

"Molecular docking is a computational technique employed to predict the
precise positioning of small molecules or ligands within the active sites of their
target proteins or receptors. Its primary purpose is to accurately estimate the
most favorable binding conformations and affinities of ligands with their
respective receptors. Currently, it finds widespread application in virtual
screening and the optimization of lead compounds in drug discovery."

The study employed the Surflex-Dock method to investigate molecular
docking. Surflex-Dock uses an empirical scoring function and a patented
search engine to dock ligands into a protein binding site*'. The Mycobacterium
tuberculosis receptor used in this study was obtained from the RCSB Protein
Data Bank (PDB entry code: SUH5) *.

Prior to docking, all water molecules within the SUHS structure were removed,
and polar hydrogen atoms were added. The Protomol, a computational
representation of a ligand that accounts for potential interactions with the
binding site, guided the molecular docking and predicted binding modes.
Protomols could be established through three methods: (1) automatic, where
Surflex-Dock identifies the largest cavity in the receptor protein; (2)
ligand-based, using a ligand positioned in the same coordinate space as the
receptor; and (3) residues-based, specifying particular residues within the
receptor 2%,

The quality of the PDB file (SUHS5) was assessed using the R value, which
measures the error between observed intensities from diffraction patterns and
predicted intensities from the model. R values of 0.20 or less are generally
considered indicative of a reliable model®, and the R value for SUH5 was
0.194 *. In this study, automatic docking was employed, meaning that the
SUHS structure was directly used for docking experiments without prior energy
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minimization. Default parameters within the software were applied.
Surflex-Dock scores, represented in -logl0(Kd) units, were used to express
binding affinities. The MOLCAD (Molecular Computer Aided Design)
program was used to visualize the binding interactions between the protein and
ligand. MOLCAD calculates and displays the surfaces of channels, cavities,
and separating surfaces between protein subunits ** ?’. Various capabilities
within MOLCAD were utilized to create a molecular surface, including the fast
Connolly method using a marching cube algorithm. This allowed for the
visualization of surfaces with different potentials.
Furthermore, Surflex-Dock total scores, which indicate binding affinities, were
used to assess ligand-receptor interactions for newly designed molecules. Each
optimized conformation of molecules in the dataset was subjected to energetic
minimization using the Tripos force field and the Powell conjugated gradient
algorithm, with a convergence criterion of 0.05 kcal mol*-1 A and
Gasteiger-Huckel charges®.

4.7 In Silico ADME&T Properties

In modern drug discovery, ADME&T (Absorption, Distribution,
Metabolism, Excretion, and Toxicity) processes are routinely carried out at
an early stage to reduce the rate of drug candidate attrition %,
Biopharmaceutical researchers are continually seeking computational strategies
to predict how drugs will behave in the human body and to identify potential
toxicity risks. To achieve this, in silico models related to ADME&T are
commonly employed, offering a rapid and preliminary screening of ADME&T
properties before compounds undergo further in vitro investigations.

Both private pharmaceutical companies and academic researchers have
extensively studied various properties associated with ADME&T. These
properties include assessing the inhibition of important factors like the
transporter P-glycoprotein (ABCB1 or Pgp) or enzymes from the cytochrome
P450 (CYP) family. Additionally, researchers examine factors such as
membrane permeability, volume of distribution, and renal clearance *°-'.

These in silico models and predictive tools are invaluable in early-stage drug
development, allowing researchers to make informed decisions about which
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compounds are worth pursuing further for drug development, thus helping to
reduce costly failures in later stages of drug discovery.

Table 2 -PLS Statistics of CoOMFA and CoMSIA Models

Fractions

Model o R* 5., F N L
Ster Elec Acc Don Hyd

CoMFA 063 085 019 189 2 0,77 0650 0350 - - -

CoMSIA 065 071 0173 2668 2 065 0040 0054 0384 000 052

sz Cross-validated correlation coefficient. RE] Non-cross-validated correlation coefficient. rag

Extemal validation correlation coefficient. S.) Standard emor of the estimate. F) F-test value Optimum
number of the components.

-0 | P
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5. RESULTS AND DISCUSSION

5.1 CoMFA Results

The results presented in Table 2 highlight the performance of the CoMFA
model. It exhibits a high R2 value of 0.85, indicative of a strong correlation
between the predicted and observed data. The F value, which measures the
model's overall goodness-of-fit, is also substantial at 18.90. Additionally, the
Scv (standard error of cross-validation) is relatively small, standing at
0.19.The cross-validated correlation coefficient Q2 is noteworthy, with a value
of 0.63 and two components identified as the optimal number. This indicates
that the model has good predictive capability when assessed internally through
cross-validation.To further validate the model's predictive ability, external
validation was performed using test sets. These test sets, comprising randomly
selected data, were optimized and aligned in the same manner as the training
sets. The results from external validation yielded a high r2 ext (external
predictive correlation coefficient) of 0.77. This high value suggests that the
CoMFA model is capable of making accurate predictions for data it hasn't been
trained on, reinforcing its reliability.Additionally, the ratio of steric to
electrostatic contributions in the model was determined to be 65:35. This ratio
implies that steric interactions play a significantly more important role than
electrostatic interactions in the molecular properties being studied.

5.2 CoMSIA Results

To understand the impact of substituents on anti-tuberculosis activity, various
combinations of hydrophobic, electrostatic, steric, donor, and acceptor fields
were explored. Among these combinations, the best CoMSIA model was
identified, which consists of four fields. Notably, hydrophobic and acceptor
hydrogen contours collectively account for over 90% of the CoMSIA
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results. The standard error associated with this COMSIA model was calculated
to be 0.173, indicating the precision of the model's predictions. To construct the
CoMSIA model, two principal components were considered optimal. The
model's performance was evaluated through cross-validation, where the
correlation coefficient Q2 for the training set was found to be 0.65,
demonstrating good predictive ability when assessed internally. The
non-cross-validated correlation coefficient R2 was also quite robust at 0.71.
External validation was employed to further assess the model's predictive
power, and the obtained r2 ext (external predictive correlation coefficient)
value was 0.65. This value suggests that the CoMSIA model exhibits good
stability and the ability to make reliable predictions for data not used during its
development, reinforcing its utility as a predictive tool.

5.3_Interpretation of COMFA and CoMSIA Results

CoMFA and CoMSIA contour maps were generated to rationalize regions
where the activity can be increased or decreased. The CoMFA and CoMSIA
contour maps are shown in (Figs 11and 12), respectively. Compound 13 was
used as a reference structure.

5.4 CoMFA Contour Maps

CoMFA celectrostatic interactions are presented with red and blue colors while
steric interactions are presented with green and yellow colored contours. The
bulky substituents are favored around green regions, while yellow regions
bulky groups are unfavored. Nucleophile groups can increase the activity
around red contours; and blue regions indicate that positive charges are
favored. The green and blue contours around R6 and R3 positions in the Fig. 8
that indicate electro-positive bulky groups are favored and could increase the
activity. The red contour around R2 position indicates that electron donating
groups can increase the activity.
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5.5 _CoMSIA Contour Map

According to CoMSIA fractions presented in Table 2, H-bond acceptor fields
and Hydrophobic fields (0.384 and 0.522) are the major fields which can
describe the activity, while steric and electrostatic fields (0.040 and 0.054) have
no influence on the activity. The contour maps presented in Fig. 8 indicate that
hydrophilic groups with H-bond acceptor character increase the activity. These
contour maps explain why compounds 15, 13, 23 with H-bond acceptor groups
and hydrophilic character in R3 and R6 positions (R3 = R2 = Cl) have good
activities, also bulky groups in R4 position (R4 = CH3) present good
antitubercular activity, while compounds 16 and 20 with electronegative groups
in R2 (R2 = NO2) shows low activity.

A) B)

I \-as 36,000 \ (
e

L~ W

Eﬁ,‘}w

Fig. 11. Std* coeff. contour maps of CoMFA analysis with 2 A grid spacing
combination with compound
13. A) Steric fields: green contours (80% contribution) indicate regions where bulky
groups increase activity, while yellow contours (20% contribution) indicate regions
where bulky groups decrease activity. B). Electrostatic fields: blue contours (80%
contribution) indicate regions where groups with electropositive character increase
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activity, while red contours (20% contribution) indicate regions where groups with
negative charges increase activity.

BO. 400 A)

=~ D~ o ol Oo— @y, -~y -
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Fig. 12 . Std* coeff. contour maps of CoMSIA analysis with 2 A grid spacing for
compound 13. A) Steric fields: green contours (80% contribution) indicate regions
where bulky groups increase activity, while yellow contours (20% contribution)
indicate regions where bulky groups decrease activity. B) Electrostatic fields: blue
contours (80% contribution) indicate regions where electropositive groups increase
activity, while red contours (20% contribution) indicate regions where
electronegative groups increase activity. C) H- bond acceptor fields: The purple (80%
contribution) and red (20% contribution) contours favorable and unfavorable
positions for hydrogen bond acceptors respectively. D) Hydrophobic fields: yellow
contours (80% contribution) indicate regions where hydrophobic properties were
favored, while white contours (20% contribution) indicate regions hydrophilic
properties were favored.

5.5 Y-Randomization:
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To validate the COMFA and CoMSIA models, multiple random shuffles of the
dependent variable were performed, and separate 3D-QSAR models were
developed for each shuffle. The results obtained, as presented in Table 3,
clearly indicate that the original COMFA and CoMSIA models are not a result
of random chance correlations within the training set.

5.6 Design of New Anti-tubercular Molecules:

Leveraging the insights gained from the CoMFA and CoMSIA models, new
molecules were designed with the aim of enhancing their anti-tuberculosis
activity, as outlined in Table 4. These newly proposed compounds were
aligned to a database using Compound 13 as a template. Remarkably, the
newly predicted structure, labeled as Al, exhibited higher activity (pMIC = 5.8
and 5.83 for CoMFA and CoMSIA models, respectively) than Compound 15,
which was the most active compound within the database.

5.7. Docking results :

Molecular docking techniques were employed to investigate the binding modes
between the ligand derivatives and the receptor, helping to further understand
the findings from the 3D-QSAR study elucidated by the CoMFA/CoMSIA
models. To validate the accuracy of molecular docking, the target ligand from
the crystal structure was redocked into the active site, yielding a root mean
square deviation (RMSD) value of 1.12 A. (Fig- 10) illustrates the top 10
positions of Molecule 15 within the tuberculosis protein pocket, showing a
stable conformation compared to Compound 16, which scores lower with
values of 3.06 and 1.71, respectively.

Subsequently, active Compound 15, inactive Compound 16, and the proposed
Compound A1l were docked into the ligand-binding pocket of the tuberculosis
protein (PDB code: SUHS), as detailed in (Fig -10). Docking results for the
less active Compound 16 indicated carbon-hydrogen bonding with TYR F: 346
and THR F: 345 residues, pi-alkyl interaction with LYS F: 339 residue, and van
der Waals bonding with ASP F: 336. Additionally, an unfavorable bond with
TRP F: 349 was observed, which could explain the lower activity of
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Compound 16. On the other hand, Compound 15 exhibited pi-alkyl and pi-pi
interactions with TYR F: 341, PHE F: 335, and LYS F: 339 residues, along
with van der Waals interactions with THR F: 345 and the absence of
unfavorable interactions. These results help elucidate why Compound 15
remains stable within the receptor pocket compared to Compound 16. The
predictions made based on CoMFA/CoMSIA contour maps, particularly the
hydrophilicity of bulky compounds with electropositive characteristics in R3
and R6 positions, were found to be in agreement with the docking results
presented in Figure 11. The proposed compounds showed van der Waals
interactions with LYS F: 342, ASP F: 336, PHE F: 335, THR F: 345 residues,
pi-alkyl and pi-pi bonds with LYS F: 339 and TYR F: 341 residues, pi-ion pair
interaction with TRP F: 349 residue, as well as pi-donor hydrogen interactions
with TYR F: 346 and LYS F: 334 residues. These receptor-ligand interactions
offer a compelling explanation for the stability and high activity of the
proposed Compound Al. Importantly, the docking results aligned well with the
findings of the H-bond acceptor/electrostatic contour maps derived from the
CoMSIA contours.

5.8. Drug-likeness or Druggability:

The proposed anti-tuberculosis drugs were evaluated in silico according to
Lipinski's Rule of Five’®. Lead compounds with more than 5 hydrogen-bond
donors, 10 hydrogen-bond acceptors, molecular weight (MW) exceeding 500
Da, and logP greater than 5 are typically considered poorly absorbed drugs.
Conversely, compounds with rotatable bonds fewer than or equal to 10 and
total polar surface area (TPSA) less than or equal to 140 A exhibit good
bioavailability™.

The evaluation results for the proposed anti-tuberculosis drugs align with
Lipinski's Rule of Five, indicating good oral bioavailability, with the exception
of Compound A2, which has a logP value exceeding 5. Furthermore, TPSA,
total hydrogen, and rotatable bonds all fall within the specified ranges.
Compounds with a molecular weight (MW) less than 500 Da are generally
more easily absorbed and diffused compared to heavier molecules. These
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properties collectively confirm the favorable bioavailability of the proposed
anti-tuberculosis drugs®*.

Table 3. r2 and Q2 Values after Several Y-randomization Tests

CoMFA CoMSIA

[teration )

Q’ r Q’ 5
l 0.13 0.07 -021 0.19
2 0.04 0.52 017 0.32
3 022 0.16 0.08 0.56
4 043 0.12 -0.14 0.26
3 033 0.04 -0.3 0.22

Table 4. Chemical Structure of the Newly Designed Molecules and their Predicted
pMIC Based on CoMFA and CoMSIA 3D-QSAR Models
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No. Structure Predicted pMIC
R,y R R3 R4 R5 R6 CoMFA  CoMSIA
Al CH{C:Hs) H  HCNOyMe H H Br 3.8 5.83
A2 CH{C:Hs) H CocCl H H Br 5.4 526
A3 C4H; H COCH; H H N0, 4.95 547
Ad CaH; H CH; H H N0, 489 5.18
A5 H H HCNO)Me H H Br 524 503
Ab H H COCl H H Br 498 4.87
AT H H COCH; H H Br 5.12 4 88
AR H H CH; H H Br 477 492
A9 H H HCNOy)Me H H N0, 481 4.96
AlD H H CocCl H H N0, 477 472
All H H COCH; H H N0, 487 4.75
Al2 H H CH, H H NO, 4.74 4.71

5.9. ADMET Properties in Drug Development:

In the drug development process, numerous potential drugs fail due to issues
such as poor blood-brain permeation, toxicity, and inadequate absorption.
Preclinical ADMET (Absorption, Distribution, Metabolism, Excretion, and
Toxicity) studies aim to weed out unsuitable candidates and focus on promising
drug candidates.

This review assesses the suitability of proposed compounds as anti-tuberculosis
agents by analyzing their virtual properties and ADMET characteristics, which
are pivotal in drug development. The pharmacokinetic (ADMET) properties of
these lead compounds were evaluated using pKCSM and admetSAR
predictors. Key parameters such as blood-brain barrier (BBB) penetration,
human intestinal absorption (HIA), Caco-2 cell permeability, and the AMES
test were employed to refine the drug-likeness profile®”.

The BBB, acting as a crucial interface between the central nervous system
(CNS) and the bloodstream, determines a drug's ability to access the brain.



PAGE \* MERGEFORMAT
17
Compounds with a logBB value less than -1 are deemed to have poor brain
distribution®®. The BBB permeability results (as shown in Table 6) indicate that
the new anti-tuberculosis compounds do not readily penetrate the BBB*’.
For intestinal absorption, compounds with an absorbance rate below 30% are
considered poorly absorbed. In this study, all tested compounds appeared to
have reasonable absorption potential in the human intestine. However, it's
worth noting that two proposed compounds, including A1, could not permeate
Caco-2 cells®™®, suggesting lower permeability, which is typically associated
with P-glycoprotein (Pgp) substrate potential. Pgp can efflux drugs and
compounds, leading to further metabolism and clearance™.
The inhibition of cytochrome P450 isoforms can lead to drug-drug interactions,
where co-administered drugs accumulate to toxic levels due to impaired
metabolism. Fortunately, some of the proposed compounds showed no
significant inhibition of cytochrome P450 isoforms. Notably, the leading
candidate compound, A1, demonstrated no acute toxicity and did not exhibit
mutagenic effects in the Ames test data™.
In summary, this review evaluates the ADMET properties of potential
anti-tuberculosis compounds, with a focus on their BBB penetration, intestinal
absorption, cytochrome P450 inhibition, and toxicity profiles. Compound Al
emerges as a promising candidate with favorable ADMET characteristics*'.
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A) B)

Fig. 13 . Molecular Surface of the Allosteric Site in Compound 15. A) The ten different positions of
compound 15 within the receptor. B) The stable position of compound 15 in the receptor.

Table 5- Physicochemical Parameters of the Four L

logP MW TPSA HBD HBA nroth
Compound Al 464 487.35 8576 0 7 9
Compound A2 5.17 44874 57.01 0 3 7
Compound A3 3.10 38040 102.80 0 7 8
Compound Ad 321 354 41 8576 0 6 7
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Fig. 12. Docking interactions of compounds 16, 15 and the proposed

compound Al.
Table 6. Pharmacokinetic (ADMET) Properties of the New Anti-tuberculosis Agents
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Models Compound Al Compound A2 Compound A3 Compound A4
Absorption and distnbution
Blood-brain barrier

-1.277 -0.343 -1064 -0477
(logBB)
Intestinal absorption

9647 94.74 100 89.53
(human)
Caco-2 permeability 0558 1058 1.044 0917
P-glycoprotein substrate Substrate Non-substrate Non-substrate Non-substrate
P-glycoprotein inhibitor Non-nhibtor Inhibitor Inhibitor [nhibttor
metabolism
CYP2D6 substrate No No No No
CYP450 3A4 substrate Yes Yes Yes Yes
CYPI A2 inhibitor No Yes Yes Yes
CYP2CY inhibitor Yes Yes Yes Yes
CYP2D6 inhibrtor No No No No
CYP2C19 inhibitor Yes Yes Yes Yes
CYP3A4 inhibttor Yes Yes No Yes
Excrefion and toxicity
Clearence -0.013 -0.195 0248 0415
AMES toxicity No Yes Yes Yes

Carcmogens

Non-carcinogens

Non-carcinogens ~ Non-carcinogens

Non-carcinogens
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CHAPTER VI
CONCLUSIONS

CONCLUSIONS




PAGE \* MERGEFORMAT
17

In Conclusiond,this study involved the identification of promising oral
anti-tubercular compounds using computer-aided drug design techniques,
which included the analysis of 31 different compounds with 1,2,3-triazole
analogues*. These techniques encompassed 3D-QSAR modeling and
molecular docking. The CoMFA/CoMSIA models exhibited strong validation
results both internally and externally, demonstrating their statistical
reliability™®.

By utilizing contour maps generated from these models, the researchers
developed new potent molecules with high anti-tubercular activity.
Additionally, they employed molecular docking to investigate how these
molecules might bind to the active pocket of the Mycobacterium tuberculosis
(MTB) receptor and understand the specific interactions between the ligands
and receptor residues™.

Furthermore, an in silico ADMET study revealed favorable properties for a
newly proposed compound referred to as Al, suggesting its potential as an
effective ligand for targeting tuberculosis. In summary, these findings highlight
the utility of well-optimized COMFA/CoMSIA models, molecular docking, and
ADMET analysis in the prediction of novel anti-tubercular agents, offering
valuable guidance for the discovery of new analogues with therapeutic
potential®.
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