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Chapter 1

Introduction

1.1 Basics of Complex Number

The Complex Plane

A complex number is represented by a+ ib, where a and b are real, and i is the
imaginary unit defined by i2 = −1. For this complex number, a is termed the real part,
while b is termed the imaginary part. The complex plane, also referred to as the Argand
plane and symbolized by C, is the space correlated with these numbers. A point
z = x+ iy can be expressed as (x, y) and converted into polar coordinates as:

(x, y) = (r cos θ, r sin θ) where r = |z| =
√

x2 + y2, θ = tan−1
(y
x

)

Figure 1: Representations of a complex number in the complex plane.

The non-negative real number r, also denoted by |z|, is referred to as the absolute value
or modulus of z, while θ is known as the principal argument of z. By employing Euler’s
formula, which asserts that eix = cosx+ i sinx for x ∈ C, we derive several equivalent
expressions for a complex number:

z = x+ iy = r(cos θ + i sin θ) = reiθ

We broaden the framework C of complex numbers by incorporating the symbol ∞ to
denote the point at infinity, or the ideal point. This modification turns the complex
plane, along with the point at infinity, into the extended complex plane, symbolized by:

Ĉ = C ∪ {∞}
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Basic Algebraic Properties

Just as with real numbers, the properties of addition and multiplication also apply to
complex numbers. Below, we outline some fundamental algebraic properties,
demonstrating a few. The commutative laws state:

(1) z1 + z2 = z2 + z1 and z1z2 = z2z1

Also, the associative laws are:

(2) (z1z2)z3 = z1(z2z3)

These follow naturally from the principles of addition and multiplication for both
complex and real numbers. The distributive law is similarly aligned:

(3) (3) z(z1 + z2) = zz1 + zz2

Example

If z1 = (x1, y1) and z2 = (x2, y2), then

z1 + z2 = (x1 + x2, y1 + y2) = (x2 + x1, y2 + y1) = z2 + z1

Due to the commutative property of multiplication, iy = yi is valid. Therefore, one can
express z = x+ yi as z = x+ iy. Additionally, because of the associative properties,
expressions like a sum z1 + z2 + z3 or a product can be written without the need for
parentheses, similar to real numbers.,The additive identity 0 = (0, 0) and the
multiplicative identity 1 = (1, 0) for real numbers are equivalent in the complex number
system. Specifically,

(4) z + 0 = z and z · 1 = z

for all complex numbers z. Moreover, 0 and 1 are uniquely the only complex numbers
possessing these characteristics.

Inverse Properties

Each complex number z = (x, y) has an additive inverse −z = (−x,−y), which fulfills
the condition z + (−z) = 0. For any complex number z = (x, y) that is not zero, there is
a multiplicative inverse satisfying zz−1 = 1. To determine this inverse, we look for real
numbers u and v such that,

(x, y)(u, v) = (1, 0)

The only solution is

z−1 =

(
x

x2 + y2
,

−y

x2 + y2

)
Note that the inverse z−1 is undefined when z = 0.,

Shapes in the Complex Plane

In classical analytic geometry, the equation of a locus is given by a relationship between
x and y. In the complex plane, it is expressed using z and z̄.
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Line

A straight line in the complex plane can be given by a parametric equation:

z = c+ dt

where c and d are complex numbers and d ̸= 0, while the parameter t runs through all
real values.

Circle

The equation of a circle centered at a point b ∈ C with radius r is given by:

|z − b| = r

In algebraic form it can be written as

(z − b)(z̄ − b̄) = r2

The inside of the circle is described by the inequality |z − b| < r.

Parabola

The equation of a parabola with focus at f0 ∈ C is given by:

|z − f0| = Re

{
(z − c) · id̄

|d|

}
where the points c ∈ C and d ∈ C \ {0} give the directrix z = c+ dt of the parabola,
while the parameter t runs through all real values.

Ellipse

The general equation of an ellipse having foci b1 and b2 in C with the length of the
semi-major axis a ∈ R is:

|z − b1|+ |z − b2| = 2a

The centre of the ellipse is

b =
b1 + b2

2

where |c1 − c2| < 2b.

Hyperbola

The general equation of a hyperbola having foci c1 and c2 in C with the length of the
semi-major axis b ∈ R is:

||z − b1| − |z − b2|| = 2a

The centre of the hyperbola is

b =
b1 + b2

2

where |c1 − c2| > 2b.
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1.2 Topology of Complex Plane

The usual topology for the complex plane C is the topology induced by the standard
metric defined as d(z1, z2) = |z1 − z2|. This document presents key concepts in the
topology of complex functions.

Graphs

Re

Im

S

Int S

Ext S

∂S

Figure 1: Int S, Ext S, and ∂S

Re

Im

Connected Set

Connecting Path

Figure 2: Connected Set

Definitions

1. Neighborhood: An ϵ-neighborhood of a complex number z0 is given by:

Bϵ(z0) = {z ∈ C : |z − z0| < ϵ}
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2. Interior Point: A point z0 is an interior point of a set S ⊆ C if ∃ ϵ > 0 such that
Bϵ(z0) ⊆ S.

3. Exterior Point: A point z0 is an exterior point of S if ∃ ϵ > 0 such
thatBϵ(z0) ∩ S = ∅.

4. Boundary Point: A point z0 is a boundary point of S if every neighborhood
Bϵ(z0) contains points in S and its complement Sc.

5. Open Set: A non-empty set S ⊆ C is open if Int S = S.

6. Closed Set: A non-empty set S ⊆ C is closed if it contains all its boundary
points.

7. Connected Set: A non-empty set S ⊆ C is connected if any pair of points can
be joined by a polygonal line that lies entirely in S.

8. Domain: A non-empty open set that is connected is called a domain.

1.3 Univalent Function

Let D be a non-empty open and connected set in the complex plane C.

A function f : D → C is called univalent on D (or schlicht or one-to-one) if

f(z1) = f(z2) =⇒ z1 = z2

for all z1, z2 ∈ D.

Example 1 - Rational Function:

f(z) =
z

1− z

Proof: We need to check if

f(z1) = f(z2) =⇒ z1 = z2 :

z1
1− z1

=
z2

1− z2

Cross-multiplying gives:
z1(1− z2) = z2(1− z1)

This simplifies to:
z1 − z1z2 = z2 − z1z2

Rearranging gives:
z1 = z2

Hence, f(z) = z
1−z

is a univalent function.
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Example 2 - Linear Function:

f(z) = az + b

Proof:
Assume f(z1) = f(z2):

az1 + b = az2 + b

This simplifies to:
az1 = az2 =⇒ z1 = z2 (if a ̸= 0)

Hence, f(z) = az + b is a univalent function.

We’ll see additional examples with the help of the graphs.

Figure 2: z9

This function is univalent in D

Figure 3: cosh(z) + 1

This function is univalent in D
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Figure 4: z − 3
7
z2

This function is univalent in D

Figure 5: (1 + z)3

This function is not univalent in D as the image curve has a point of
self-intersection.

Figure 6: 4z + z2 + z3

This function is univalent in D
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Figure 7: (1 + z + z2)2

This function is not univalent in D as the image curve has a point of
self-intersection.

Problem

Show that f(z) = z + a2z
2 is univalent in D if and only if |a2| ≤ 1

2
.

Proof

Suppose f(z) = z + a2z
2 is univalent in D ,then

f(z1) = f(z2) =⇒ z1 = z2

f(z1) = f(z2) ⇐⇒ z1 + a2z
2
1 = z2 + a2z

2
2

⇐⇒ (z1 − z2) + a2(z1 − z2)(z1 + z2) = 0

⇐⇒ (z1 − z2)(1 + a2(z1 + z2)) = 0.

That is,
f(z1) = f(z2) ⇐⇒ (z1 − z2)(1 + a2(z1 + z2)) = 0 .

Case 1: z1 = z2, which is trivial.
Case 2: 1 + a2(z1 + z2) = 0 =⇒

a2 =
−1

z1 + z2
.

Now, note that
−2 ≤ z1 + z2 ≤ 2 (since z1, z2 ∈ D).

Thus,
−2 ≤ −(z1 + z2) ≤ 2,

which gives
−1

2
≤ − 1

z1 + z2
≤ 1

2
.

Therefore,
−1

2
≤ a2 ≤

1

2
.

Hence, |a2| ≤ 1
2
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Converse

Now, suppose |a2| ≤ 1
2
. We want to prove that f(z1) = f(z2) implies z1 = z2 for

z1, z2 ∈ D.
Assume f(z1) = f(z2), which implies

z1 + a2z
2
1 = z2 + a2z

2
2 .

Rearranging,

(z1 − z2) + a2(z
2
1 − z22) = 0 =⇒ (z1 − z2)(1 + a2(z1 + z2)) = 0.

Case 1: If z1 = z2, then the function is trivially injective.
Case 2: If z1 ̸= z2, then we must have:

1 + a2(z1 + z2) = 0 =⇒ z1 + z2 = − 1

a2
.

Since z1, z2 ∈ D, we know that:

|z1 + z2| ≤ |z1|+ |z2| < 2.

Thus, ∣∣∣∣− 1

a2

∣∣∣∣ = 1

|a2|
.

This implies
1

|a2|
< 2 =⇒ |a2| >

1

2
.

But this contradicts the assumption that |a2| ≤ 1
2
. Therefore, the case where z1 ̸= z2

cannot occur.

Conclusion

Thus, if |a2| ≤ 1
2
, the function f(z) = z + a2z

2 is injective in D, which means it is
univalent in D.

Before proceeding to the next section of Cauchy-Riemann equations, we first define the
concept of limit and derivative in C.

Limit

Let f be a complex valued function defined at all points z in some deleted
neighborhood of z0. The statement that the limit of f(z) as z approaches z0 is a
number w0, means that for each positive number ϵ , ∃ a positive number δ such that

|f(z)− w0| < ϵ whenever 0 < |z − z0| < δ

It is denoted by limz→z0 f(z) = w0

10



Derivative

Let f be a function whose domain of definition contains a neighborhood

|z − z0| < ϵ

of a point z0. The derivative of f at z0 is the limit

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0

and the function f is said to be differentiable at z0 when f ′(z0) exists
Put ∆z = z − z0,then

f ′(z0) = lim
∆z→0

f(∆z + z0)− f(z0)

∆z

Since f is defined throughout a neighborhood of z0, the number f(z + z0) is defined for
sufficiently small |∆z|
Drop the subscript on z0 and let ∆w = f(z +∆z)− f(z), then

dw

dz
= lim

∆z→0

∆w

∆z
.

The differentiation properties which are followed in R are also followed in C

Some of these properties are:-

i) d
dz
c = 0

ii) d
dz
z = 1

iii) d
dz
[cf(z)] = cf ′(z)

iv) d
dz
zn = nzn−1 , n ∈ Z and z ̸= 0

v) d
dz
[f(z) + g(z)] = f ′(z) + g′(z)

vi) d
dz
[f(z)g(z)] = f(z)g′(z) + g(z)f ′(z)

vii) d
dz
[f(z)
g(z)

] = g(z)f ′(z)−f(z)g′(z)
g(z)2

for g(z) ̸= 0

vii) d
dz
f(g(z)) = g′(z)f ′(g(z))

where, c is any constant in C and f(z), g(z) are complex valued functions.

1.4 Cauchy-Riemann Equations

Let f(z) = u(x, y) + iv(x, y) be a complex valued function , where u and v are real and
imaginary parts of f(z) respectively.
If f ′(z) exists at a point z0 = x0 + iy0, then the first order partial derivatives of u and v
must exist at (x0, y0) and they must satisfy the Cauchy-Riemann Equations

ux = vy, uy = −vx

there. Also f ′(z) can be written as

11



f ′(z0) = ux + ivy

where these partial derivatives are evaluated at (x0, y0).

In polar coordinates, these equations can be written as

rur = vθ, uθ = −rvr

given that first order partial derivatives of u and v exist w.r.t r and θ at z0 = (r0, θ0),
then f ′(z) exists at z0, and

f ′(z0) = e−iθ(ur + ivr)

Sufficient Conditions for Differentiability

The satisfaction of the Cauchy–Riemann equations at a point z0 = (x0, y0) is not
sufficient to ensure the existence of the derivative of a function f(z) at that point. But,
with certain continuity conditions, we have the following useful theorem.

Theorem

Let the function f(z) = u(x, y) + iv(x, y) be defined throughout some ϵ-neighborhood of
a point z0 = x0 + iy0, and suppose that

(a) the first-order partial derivatives of the functions u and v with respect to x and y
exist everywhere in the neighborhood;

(b) those partial derivatives are continuous at (x0, y0) and satisfy the
Cauchy–Riemann equations

ux = vy, uy = −vx

at (x0, y0).

Then f ′(z0) exists, its value being

f ′(z0) = ux(x0, y0) + ivx(x0, y0).

Proof

Assume that conditions (a) and (b) are satisfied. Write z = x+ iy, where 0 < |z| < ϵ,
and define

w = f(z0 + z)− f(z0).

Thus,
w = u(x0 + x, y0 + y)− u(x0, y0) + i (v(x0 + x, y0 + y)− v(x0, y0)) .

Assuming the first-order partial derivatives of u and v are continuous at (x0, y0), we can
write

u(x0 + x, y0 + y)− u(x0, y0) = ux(x0, y0)x+ uy(x0, y0)y + ϵ1x+ ϵ2y,

and
v(x0 + x, y0 + y)− v(x0, y0) = vx(x0, y0)x+ vy(x0, y0)y + ϵ3x+ ϵ4y,

12



where ϵ1, ϵ2, ϵ3, ϵ4 → 0 as (x, y) → (0, 0).
Substituting these expressions into w, we get

w = ux(x0, y0)x+ uy(x0, y0)y + ϵ1x+ ϵ2y + i (vx(x0, y0)x+ vy(x0, y0)y + ϵ3x+ ϵ4y) .

Since the Cauchy–Riemann equations are assumed to be satisfied at (x0, y0), we can
replace uy(x0, y0) by −vx(x0, y0) and vy(x0, y0) by ux(x0, y0) in the above expression.
Then we divide by z = x+ iy to get

w

z
= ux(x0, y0) + ivx(x0, y0) +

ϵ1 + iϵ3
z

x+
ϵ2 + iϵ4

z
y.

Since |x| ≤ |z| and |y| ≤ |z|, we have∣∣∣∣ϵ1 + iϵ3
z

x

∣∣∣∣ ≤ |ϵ1 + iϵ3| ≤ |ϵ1|+ |ϵ3|,

and similarly ∣∣∣∣ϵ2 + iϵ4
z

y

∣∣∣∣ ≤ |ϵ2 + iϵ4| ≤ |ϵ2|+ |ϵ4|.

Thus, the last two terms tend to zero as z → 0. Therefore, we have established the
expression for f ′(z0).

Examples

(a) Consider the exponential function

f(z) = ez = exeiy (z = x+ iy),

In view of Euler’s formula, this function can be written as

f(z) = ex cos y + iex sin y,

Therefore,
u(x, y) = ex cos y and v(x, y) = ex sin y.

Since ux = vy and uy = −vx everywhere, and since these derivatives are continuous
everywhere, the conditions in the above theorem are satisfied at all points in the
complex plane. Thus, f ′(z) exists everywhere, and

f ′(z) = ux + ivx = ex cos y + iex sin y.

Note that
f ′(z) = f(z) for all z.

(b) It follows from our theorem that the function f(z) = |z|2, whose components are

u(x, y) = x2 + y2 and v(x, y) = 0,

has a derivative at z = 0. In fact,

f ′(0) = 0 + i0 = 0.

and this function cannot have a derivative at any nonzero point since the
Cauchy–Riemann equations are not satisfied at such points.
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1.5 Analytic functions

Definition

A function f of the complex variable z is said to be analytic at a point z0 if it has a
derivative at every point within a neighborhood around z0. Conversely, if f is not
analytic at z0, yet there is a point in every neighborhood of z0 where f is analytic, then
z0 is termed a singular point or point of singularity for f . Consider the function
f(z) = 1/z; it is analytic at every nonzero point in the finite plane. However, the
function f(z) = |z|2 is not analytic at any point because it only possesses a derivative at
z = 0 and lacks a derivative throughout any neighborhood. When a function is analytic
at every point across the entire finite plane, it is classified as entire. Entire functions
include polynomial functions, exponential functions, and the sine and cosine functions.
Additionally, one can also use the properties of derivatives to demonstrate that a
function is analytic.

Examples

(a) f(z) = z3+i
z2−3z+2

To determine the singular points of this function, we find those values of z which are
the solution of z2 − 3z + 2 = 0. These values are z = 1 and z = 2, from which it follows
that f(z) is differentiable everywhere except at z = 1, 2.

Therefore z = 1, 2 are singular points of f(z) = z3+i
z2−3z+2

.

(b) h(z) = 3x+ y + i(3y − x) is entire

Here, u = 3x+ y and v = 3y − x

Both u and v are polynomials, hence their first order partial derivatives exist, w.r.t. x
and y .

Also

ux = 3 = vy , uy = 1 = −vx

This proves that h(z) is entire.

(c) F (z) = z2+1
(z+2)(z2+2z+2)

is not entire

Let q(z) = (z + 2)(z2 + 2z + 2)

Note that,

z2 + 2z + 2 = (z + 1)2 + 1

Values of z satsifying q(z) = 0, are

z = −2;−1± i

⇒ F (z) is not analytic throughout its domain, and hence not entire.

14



(d) G(z) = e−y sinx− ie−y cosx, is entire

u = e−y sinx v = −e−y cosx

e−y, sinx and cos x are differentiable functions, hence e−y sinx and −e−y cosx are also
differentiable.

⇒ First order partial derivatives of u and v exist w.r.t x and y.

and

ux = e−y cosx uy = −e−y sinx

vx = e−y sinx vy = e−y cosx

⇒ ux = vy uy = −vx

By sufficient condition of differentiability, we infer G(z) is entire.

1.6 Starlike Functions

A function w = f(z) is called a starlike function if it satisfies the following conditions:

• The function f(z) is regular (analytic) and univalent (injective) in the unit disk,
i.e., for |z| < 1.

• The image of the disk |z| < 1 under the function f(z) is a starlike domain with
respect to w0. This means that for any point w0 in the image, the line segment
joining w0 to any other point in S lies entirely within S.

The function f is said to be starlike if it maps U = {z : |z| < 1} onto a domain that is
star-shaped with respect to the origin. This is equivalent to the condition:

ℜ
(
zf ′(z)

f(z)

)
> 0, for |z| < 1.

This condition guarantees that the image of the disk under f is a starlike domain.

Starlike Class

The set of all starlike functions is denoted by S∗. A starlike function is a function
that preserves the starlike nature of a domain with respect to the origin. Specifically, we
define:

A = {f : D → C | f is analytic and univalent, f(0) = 1, f ′(0) = 1}

The set S∗ consists of all functions in A that satisfy the following condition for
starlikeness:

S∗ =

{
f ∈ A | ℜ

(
zf ′(z)

f(z)

)
> 0 for all z ∈ U

}
.
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Here, ℜ(·) denotes the real part, and the condition ℜ
(

zf ′(z)
f(z)

)
> 0 ensures that the

image of the function f remains starlike with respect to the origin for all z in the unit
disk U = {z : |z| < 1}.

Examples

The following functions are starlike as evident form the line segment formed.

(a) f(z) = z
2
+ z13

37

This function is starlike with respect to f(0) = 0

Figure 8: Figure 9:

(b) g(z) = 1 + tan z

This function is starlike with respect to g(0) = 1

Figure 10: Figure 11:

(c) h(z) = ez(sin z + cos z)

This function is starlike with respect to h(0) = 1

16



Figure 12: Figure 13:

(d) θ(z) = z − z6

6

This function is starlike with respect to θ(0) = 0

Figure 14: Figure 15:
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Chapter 2

Function associated with Nephroid
domain

2.1 Introduction

The name nephroid (meaning ’kidney shaped’) was
used for the two-cusped epicycloid by Proctor in 1878. The nephroid is
the epicycloid formed by a circle of radius a rolling externally on a fixed
circle of radius 2a. The nephroid has length 24a and area 12πa2 and is
given by the parametric equations:

x = a(3 cos t− cos 3t)

y = a(3 sin t− sin 3t)

The evolute of a nephroid is another nephroid half as large and rotated 90 degrees.
This figure is about nephroid and its evolute magenta: point with osculating circle
and center of curvature . As the evolute of a nephroid is another nephroid,
the involute of the nephroid is also another nephroid. The original nephroid in the
image is the involute of the smaller nephroid.

The function considered in this chapter is

η(z) = 1 +
z

2
+
z3

6
,where z ∈ D

Figure 1: Image of unit disk under the function η(z) = 1 + z
2
+ z3

6

The function η(z) satisfies the following:-

1.η(z) is univalent
2.Re(η) > 0
3.η(D) is starlike with respect to η(0) = 1
4.η(D) is symmetric about the real axis
5.η′(0) > 0

18



We now prove that η satifies each of these properties

1. Let z1, z2 ∈ D and let η(z1) = η(z2),then

1 +
z1
2
+
z31
2

= 1 +
z22
2

+
z22
2

⇒ z1
2
− z2

2
+
z31
6

− z32
6

= 0

⇒ z1 − z2
2

+
z31 − z32

6
= 0

⇒ 3(z1 − z2) + (z31 − z32) = 0

⇒ (z1 − z2)(3 + z21 + z22 + z1z2) = 0

Note that since z ∈ D, hence

(3 + z21 + z22 + z1z2) ̸= 0

So, z1 − z2 = 0 is true, which implies, z1 = z2

Therefore η(z1) = η(z2) ⇒ z1 = z2, hence η is univalent in D

2. Put z = reiθ, 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π then

η(reiθ) = 1 +
reiθ

2
+
r3e3iθ

6

⇒ η(reiθ) = 1 +
r cos θ

2
+
r3 cos 3θ

6
+ i

(
r sin θ

2
+
r sin 3θ

6

)
⇒ Re(η) = 1 +

r cos θ

2
+
r cos 3θ

6

Note that, for 0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π

−1 ≤ cos θ ≤ 1

⇒ −r ≤ r cos θ ≤ r

⇒ 0 ≤ r cos θ ≤ 1

⇒ 0 ≤ r cos θ

2
≤ 1

2

Similarly, we can show that 0 ≤ r3 cos 3θ
6

≤ 1
6

On adding 1 along with both the inequalities, we get

1 ≤ 1 +
r cos θ

2
+
r3 cos 3θ

6
≤ 5

6

i.e

1 ≤ Re(η) ≤ 5

3
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Therefore, Re(η) > 0

3. To prove η(D) is starlike with respect to η(0) = 1, we will show that

Re

(
zη′(z)

η(z)− 1

)
> 0

To compute this, we use mathematica software, by which we get,

Re

(
zη′(z)

η(z)− 1

)
=

3(3 + r4 + 4r2 cos 2θ)

9 + r4 + 6r2 cos 2θ

where we have taken z = reiθ

Since, z ∈ D, it is evident that above equation is greater than 0

Also, on plotting Re
(

zη′(z)
η(z)−1

)
in mathematica, we get

Figure 2: Real part of complex function zη′(z)
η(z)−1

Which shows that Re
(

zη′(z)
η(z)−1

)
> 0

4. The graph of η(z) shows that the image formed above and below real axis are
same, therefore, we can say that η(z) is symmetric about real axis over D, i.e, η(D) is
symmetric about real axis

5. η′(z) = 1
2
+ z2

2
and as η′(0) = 1

2
, hence

η′(0) > 0

2.2 Main Results

Theorem 2.1. The function η(z) = 1 + z
2
+ z3

6
maps D onto the region bounded by(

3

((
u− 1)2

)
+ v2 − 1

9

))3

−
(
3

2
(u− 1)

)2

= 0
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Proof. Let t ∈ (−π, π] and put z = eit, we get

u+ iv = η(eit) = 1 +
eit

2
+
e3it

6

On expanding eit and e3it,

u+ iv = 1 +
cos t+ i sin t

2
+

cos 3t+ i sin 3t

6

Therefore,

u = 1 +
cos t

2
+

cos 3t

6
, v =

sin t

2
+

sin 3t

6

Note that,

(u− 1)2 + v2 =
1

4
+

1

36
+

cos 2t

6

=
1

4
+

1

36
− 1

6
+

cos2 t

3

⇒ 3

(
(u− 1)2 + v2 − 1

9

)
= cos2 t

and

u = 1 +
2 cos3 t

6

⇒ cos t =

(
3(u− 1)

2

) 1
3

Therefore,

3

(
(u− 1)2 + v2 − 1

9

)
=

(
3(u− 1)

2

) 2
3

⇒
(
3

(
(u− 1)2 + v2 − 1

9

))3

−
(
3(u− 1)

2

)2

= 0

Figure 3: Boundary of η(z)
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Theorem 2.2 For 0 < r < 1, the function η(z) satisfies

min
|z|=r

Re(η(z)) = 1− r

2
− r3

6

and,

max
|z|=r

Re(η(z)) = 1 +
r

2
+
r3

6

Proof . Let z = reit, where 0 < r < 1, and −π < t ≤ π,then

Re(η(reit)) = 1 +
r cos t

2
+
r3 cos 3t

6

= 1 +
r cos t

2
+
r3(4 cos3 t− 3 cos t)

6

= 1 +
r cos t(1− r2)

2
+

2r3 cos3 t

3

= 1 +
rx(1− r2)

2
+

2r3x3

3
= f(x) , x = cost

On taking derivative of f , we get

f ′(x) =
1

2
r(1− r2) + 2r3x3

The values satisfying f ′(x) = 0 are

x =
1

2r

√
r2 − 1 and x = − 1

2r

√
r2 − 1

which are both complex as 0 < r < 1, therefore, we find the values of f at its boundary
points, i.e, at x = −1 and x = 1

f(−1) = 1− r

2
− r3

6

f(1) = 1 +
r

2
+
r3

6
On plotting these values, we get

Figure 4: f(−1)
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Figure 5: f(1)

From the above graphs, we infere that f(1) is an increasing function of r, whereas
f(−1) is a decreasing function of r, ∀ 0 < r < 1

Therefore,

min
|z|=r

Re(η(z)) = f(−1) = 1− r

2
− r3

6

max
|z|=r

Re(η(z)) = f(1) = 1 +
r

2
+
r3

6

Theorem 2.3 Let 1
3
< a < 5

3
. Let ra and Ra be given by,

ra =


a− 1

3
if 1

3
< a < 4

5√
(a− 1)2 + 1

9
if 4

5
< a < 6

5

5
3
− a if 6

5
< a < 5

3

Ra =

{
5
3
− a if 1

3
< a < 1

a− 1
3

if 1 < a < 5
3

then

{w ∈ C : |w − a| < ra} ⊆ Γ ⊆ {w ∈ C : |w − a| < Ra}

where Γ = {u+ iv :
(
3
(
(u− 1)2 + v2 − 1

9

))3 − (
3(u−1)

2

)2

< 0}

Proof . Let z = eit,then

u(t) = 1 +
cos t

2
+
cos3t

6
, v(t) =

sin t

2
+

sin 3t

6
, −π < t ≤ π

where u and v are real and imaginary parts of η respectively

The square of the distance from the point (a, 0) to the points on the boundary equation
of η is given by,

ψ(t) = (a− u(t))2 + v(t)2 = (a− 1)2 +
1

9
+
cos2t

3
− 4(a− 1)cos3t

3
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= (a− 1)2 +
1

9
+
x2

3
− 4(a− 1)x3

3

= g(x)

x = cos t,−π < t ≤ π

But since the boundary equation of η is symmetric about real axis(by property 4), we
can consider only 0 ≤ t ≤ π

Now, g′(x) = 0 ⇒ x = 0 or x = 1
6(a−1)

But since lima→1
1

6(a−1)
= ∞

Hence, 1
6(a−1)

cannot be a crtical point for g

At x = 0, g′′(0) = 2
3

⇒ x0 = 0 is point of absolute minima for g

Now we compare the values of g at its end points to find local maximum and local
minimum

At x = −1

g(−1) =

(
a− 1

3

)2

At x = 1

g(1) =

(
5

3
− 1

)2

Also as g attains absolute minima at x0, so

g(0) = (a− 1)2 +
1

9

Note that, for 1
3
< a < 4

5

g(−1) < g(0), g(1)

for 4
5
< a < 6

5

g(0) ≤ g(−1), g(1)

and for 6
5
< a < 5

3

g(1) < g(0), g(−1)

Also, for 1
3
< a < 1,

g(−1) < g(1)

and

g(−1) < g(1), for 1 < a <
5

3
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min
0≤t≤π

ψ(t) = min{g(−1), g(0), g(1)}

and,

max
0≤t≤π

ψ(t) = max{g(−1), g(1)}

Therefore, we have

ra =


a− 1

3
if 1

3
< a < 4

5√
(a− 1)2 + 1

9
if 4

5
< a < 6

5

5
3
− a if 6

5
< a < 5

3

Ra =

{
5
3
− a if 1

3
< a < 1

a− 1
3

if 1 < a < 5
3

Figure 6: ra = a− 1
3

Figure 7: ra =
5
3
− a
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Figure 8: ra =
√

(a− 1)2 + 1
9

Figure 9: Ra =
5
3
− a Figure 10: Ra = a− 1

3

We now use the following theorem’s statement to construct starlike functions using
analytic functions

Theorem 2.4 A function belongs to class S∗(η) iff ∃ an analytic function p(z), sat-
isfying p(z) ≺ η(z), such that

f(z) = z exp

(∫ z

0

p(ξ)− 1

ξ
dξ

)
, z ∈ D

where S∗(η) :=
{
f ∈ A : zf ′(z)

f(z)
≺ η(z)

}
is a subclass of starlike functions .

Consider the following analytic functions pi : D → C, i = 1, 2, 3, 4, 5, defined as
follows.
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i) p1(z) = 1 + z
3
+ z7

38

Figure 11: Image of p1(z) inside η(z)

ii) p2(z) = 1 + ze
z
2

4

Figure 12: Image of p2(z) inside η(z)

iii)p3(z) = 1 + z cosh(z)
10

+ z sinh(z)
15

+ z
4

Figure 13: Image of p3(z) inside η(z)

iv)p4(z) = 1 + z
4
+ z5

19
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Figure 14: Image of p4(z) inside η(z)

v)p5(z) = 1 + z
4
+ z2

10
+ z5

25
+ z6

40

Figure 15: Image of p5(z) inside η(z)

For each i = 1, 2, 3, 4, 5, pi(0) = 1 and pi(D) ⊆ η(D) and η(z) is univalent, hence
p(z) ≺ η(z)

By using theorem, the following functions are members of S∗

i)f1(z) = z exp
(

z
3
+ z7

266

)
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Figure 16: f1(z)

ii)f2(z) = z exp
(
1
2
(−1 + e

z
2 )
)

Figure 17: f2(z)

iii)f3(z) = z exp
(

1
60
(6 sinh(z) + 4 cosh(z) + 15z − 4)

)
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Figure 18: f3(z)

iv)f4(z) = z exp
(

z
4
+ z5

95

)

Figure 19: f4(z)

v)f5(z) = z exp
(

z
4
+ z2

20
+ z5

125
+ z6

240

)
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Figure 20: f5(z)

The plot of each fi(z) (for i = 1, 2, 3, 4, 5), verifies that they are starlike.

If we choose p(z) = η(z) = 1 + z
2
+ z3

6
, then

f(z) = ze
z
2
+ z3

18 = z +
z2

2
+
z3

8
+

11z4

144
+

35z5

1152
+

83z6

11520
+

1129z7

414720
+ ....

Figure 21: f(z)

2.3 Conclusion

In this chapter, several key results have been derived for the function η(z) = 1 + z
2
+ z3

6
.

The function satisfies η(0) = 1, and its real part is always postive. Additionally, the
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image of the unit disk under η′(z) is starlike with respect to 1 and is symmetric about
the real axis. The derivative at the origin, η′(0) is postitive.

The boundary of the function’s image is described by the equation(
3

((
x− 1)2

)
+ y2 − 1

9

))3

−
(
3

2
(x− 1)

)2

= 0

Furthermore, the minimum and maximum values of Re(η(z)) is determined by

1− r

2
− r3

6
and 1 +

r

2
+
r3

6

respectively for 0 < r < 1 Finally, the smallest disk centered at z = 1 that contains Γ is
{w ∈ C : |w − 1| < 2

3
} and the largest disk centered at z = 1 that is contained in Γ is

{w ∈ C : |w − 1| < 1
3
}
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Chapter 3

Function associated with a sum of
exponential and polynomial function

3.1 Introduction

A limacon is a plane curve that can be defined as the path of a point fixed to a circle that
rolls around another circle of the same radius. The word ’limacon’ comes from French
and literally means ’snail’. They belong to the family of curves called centered trochoids;
more specifically, they are epitrochoids. The polar equation for a limaçon is r = a ± b
sin t or r = a ± b cos t, where a and b are not equal to zero.

Figure 1: Image of D under f(z) = ez

Figure 2: Image of D under f(z) = z3

5

A complex function f(z) = ez is associated with Convex Limacon domain. A convex
limacon is a plane curve that looks like a circle that has been flattened on one side.
However, a complex function f(z) = z3

5
is associated with Circle domain.
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Figure 3: Image of D under f(z) = ez + z3

5

• f is univalent in D as the image curve does not have any intersecting lines. Also,
Re(f) > 0.

• f(0) = 1 and f is starlike w.r.t. f(0) = 1.

• f is symmetric about the real axis.

• f ′(z) = ez + 3z2

5

Hence, f ′(0) = 1 > 0

We note that the function f(z) = ez + z3

5
maps D onto the region which is symmetric

about the real axis and lies completely in the right-half plane.

3.2 Main Results

Theorem 1. For
√
2− 1 < a ≤

√
2 + 1, let ra = 1− |

√
2− a| and Ra =

√
a2 + 1.Then

{w : |w − a| < ra} ⊂ {w : |w − a| < Ra}.

Proof. For z = eit, the parametric equations of f(z) = ez + z3

5
are

u(t) = ecostcossint+
cos3t

5

and

v(t) = ecostsinsint+
sin3t

5
,

−π < t < π.
The square of the distance from the point (a,0) to the points on boundary of f(D) is
given by

z(t) = (a− u(t))2 + (v(t))2

= (a− (ecostcossint+
cos3t

5
))2 + (ecostsinsint+

sin3t

5
)2

= a2 +
1

25
+ e2cost +

2

5
ecostcos(3t− sint)− 2aecostcossint− 2

5
acos3t
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It can be easily seen that

z′(t) = −2e2costsint−6

5
ecostsint(3t−sint)+

6

5
asin3t−2

5
ecostsin(sint−2t)+2aecostsin(t+sint)

A calculation shows that z′(t) ̸= 0 for any 0 < t < π.

Plotting the z′(t) over t from 0 to 2π gives the critical points graphically. The points on
x-axis where the graph cuts axis are the possible critical points.
Critical points when z′(t) = 0 are: {0,0.756252,2.02816,3.14159=π, 4.25502, 5.52693}.

Then, we can check the nature of critical points and easily find whether they are a
maximum or a minimum.

Finally, we will plot the Minima, Maxima and Radius of function f(z) = ez + z3

5
us-

ing Desmos Online Graphing Calculator.

Figure 4: Image of disc under f(z) = ez + z3

5
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Figure 5: Plotting of z’(t)

Figure 6: Maxima of f(z) = ez + z3

5

Figure 7: Minima of f(z) = ez + z3

5
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Figure 8: Radius of f(z) = ez + z3

5

3.3 Conclusion

We consider a complex function f(z) = ez + z3

5
associated with a sum of exponential

and polynomial function and study the image of the mapping. While the information
we obtain about the function from its image is limited, creative applications of compu-
tational tools such as ComplexTool, Wolfram Mathematica and Desmos Online Graphing
Calculator yield a host of interesting results.
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Chapter - 4

Function associated with Epitrochoid
domain

4.1 Introduction

The epitrochoid, a smooth curve generated by rolling one circle around the exterior of an-
other, is one of the most intriguing geometric shapes in mathematics. When divided into
distinct regions, each portion of the epitrochoid domain retains its own unique properties,
while simultaneously presenting interesting contrasts. In this chapter, we will embark on
a focused exploration of the function associated with right half of epitrochoid domain

f(z) =
z2

2
+ z + 1

Figure 1: Image of unit disk under the function f(z) =
z2

2
+ z + 1

• f is univalent in D as the image curve does not have any intersecting. Also, Re(f) >
0.

• f(0) = 1 and f is starlike w.r.t f(0) = 1.

• f is symmetric about the real axis.

• f’(z) = z + 1. Hence, f’(0) = 1 > 0.
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4.2 Main results

Theorem 4.1 The function f(z) =
z2

2
+z+1 maps D onto the region which is symmetric

about the real axis lies completely in the right-half plane.

Proof. u(t) + iv(t) = f(eit) = e2it

2
+ eit + 1

=
cos(2t)

2
+ cost+ 1 + i(

sin(2t)

2
+ sint)

gives

u(t) =
cos(2t)

2
+ cost+ 1 and v(t) =

sin(2t)

2
+ sint

For z = eit, the parametric equations of f(z) =
z2

2
+ z + 1 are

u(t) =
cos(2t)

2
+ cost+ 1

and

v(t) =
sin(2t)

2
+ sint,

−π < t < π .

(u− 1)2 + v2 =
cos2 2t+ sin2 2t

4
+ cos2 t+ sin2 t+ cos 2t cos t+ sin 2t sin t

=
5

4
+ (1− 2 sin2 t) cos t+ 2 sin2 t cos t

(u− 1) + v2 =
5

4
+ cos t

Now,

u =
cos 2t

2
+ cos t+ 1

u =

(
cos t+

1

2

)2

+
1

4

⇒ (v − 1

4
)2 =

(
cos t+

1

2

)2

⇒ cos t = −1

2
±
√

v − 1

4

∴ (u− 1)2 + v2 =
5

4
− 1

2
+

√
v − 1

4

(u− 1)2 + v2 =
3

4
+

√
v − 1

4
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Theorem 4.2 Let a = 1.5. Let ra and Ra be given by

ra = 1

and

Ra = 2

Then
{w ∈ C : |w − a| < ra} ⊆ f(d) ⊆ {w ∈ C : |w − a| < Ra}.

Proof. For z = eit, the parametric equations of f(z) =
z2

2
+ z + 1 are

u(t) =
cos(2t)

2
+ cos(t) + 1

and

v(t) =
sin(2t)

2
+ sin(t)

−π < 0 < π
Evaluating u(t) at t = 0 and t = π:

u(0) =
5

2
, u(π) =

1

2

Given a = 1.5, the function z(t) becomes:

z(t) =

(
cos(2t)

2
+ cos(t) + 1− a

)2

+

(
sin(2t)

2
+ sin(t)

)2

The derivative z′(t) was plotted for t in the interval [0, 2π]. The critical points when
z′(t) = 0 solving this in Mathematica are:

t = 0, t = 1.5708, t = 3.14159 ≈ π, t = 4.71239, t = 6.28319

Figure 2: Figure 2 : Image of z′(t)
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To check the nature of the critical points:

z′′(0) = 2 (pointofminima)

z(0) = 1 (minima)

z′′(1.5707963267948966) = −2 (pointofmaxima)

z(1.5707963267948966) = 2 (maxima)

For t = π:
z′′(π) = 2

z(π) = 1 (same)

For t = 4.71238898038469:

z′′(4.71238898038469) = −2

z(4.71238898038469) = 2 (same)

For t = 6.283185307179586:

z′′(6.283185307179586) = 2

z(6.283185307179586) = 1 (same)

Hence, ra = 1 and Ra = 2.

F igure 3 : Calculations of z(t) and plotting of functions when a = 1.5

4.3 Conclusion

This chapter provided a detailed analysis of the cardioid function f(z) =
z2

2
+ z + 1

within the unit disk. We concluded that this function consists of several important
properties: univalence, a positive real part, a starlike image symmetric about the real
axis, and a positive derivative at the origin. These properties were proven through a
combination of analytical techniques and computational process using Mathematica. The
determination of inner and outer circular bounds for the image of the unit disk helps to
offer a quantitative description of the function’s mapping behavior.
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Chapter 5

Function Associated with the Right
Half of the Lemniscate Domain

5.1 Introduction

The lemniscate, a symmetrical curve resembling the infinity symbol (∞), stands as
one of the most captivating mathematical shapes. When divided into two symmetrical
halves, each portion of the lemniscate retains its own unique characteristics, while at
the same time offering intriguing distinctions. In this chapter, we will embark on a
focused exploration of the function associated with right half of Lemniscate domain,
ϕ(z) = 1 + z+

√
1 + z

Figure 5.1: Image of disk under the function ϕ(z)

This function satisfies the following:-

1.ϕ(z) is univalent
2.Re(ϕ) > 0
3.ϕ(D) is starlike with respect to ϕ(0) = 2
4.ϕ(D) is symmetric about the real axis
5.ϕ′(0) > 0

We now prove that ϕ satifies each of these properties

1. Univalence Condition

ϕ is univalent in D as it maps the domain onto non intersecting arcs and rays.(see fig.
5.1 )
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2. In order to prove that ℜ{f(z)} > 0, z ∈ D, it suffices to show that

ℜ
{
f(eit)

}
≥ 0, t ∈ [0, 2π).

Let z = eit, t ∈ [0, 2π), then

1+eit+
√
eit + 1 =


1 + cos t+ i sin t+

√
2 cos(t/2) (cos(t/4) + i sin(t/4)) , for t ∈ [0, π),

0 for t = π,

1 + cos t+ i sin t+
√

2| cos(t/2)| (cos(t/4)− i sin(t/4)) , for t ∈ (π, 2π).

Now, some simple calculations show that ℜ
{
1 + eit +

√
eit + 1

}
= 0, if and only if

t = π, which implies that ℜ{f(z)} > 0 in D

3. To prove ϕ(D) is starlike with respect to ϕ(0) = 2, we will show that

ℜ
(

zϕ′(z)

ϕ(z)− 2

)
> 0

where we take z = reiθ.
Since z ∈ D, on plotting ℜ

(
zϕ′(z)
ϕ(z)−2

)
in Mathematica, we get

Figure 5.3: ℜ
(

zϕ′(z)
ϕ(z)−2

)

Which shows that ℜ
(

zϕ′(z)
ϕ(z)−2

)
> 0

4. The graph of ϕ(z) (see fig. 5.1 ) shows that the image formed above and below the
real axis are the same, therefore, we can say that ϕ(z) is symmetric about the real axis
over D, i.e., ϕ(D) is symmetric about the real axis.

5.

ϕ′(z) = 1 +
1

2
√
1 + z

and as

ϕ′(0) = 1 +
1

2
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hence
ϕ′(0) > 0

5.2 Main Results

Theorem 5.1 Let a = 1. Let ra and Ra be given by

ra = 0.816013

and
Ra = 1 +

√
2.

Then
{w ∈ C : |w − a| < ra} ⊆ ϕ(D) ⊆ {w ∈ C : |w − a| < Ra} .

Proof. For z = eit, the parametric equations of the function ϕ(z) = 1 + z +
√
1 + z are

u(t) = 1 + cos t+

√
2 cos

t

2

(
cos

t

4

)
, v(t) = sin t+

√
2 cos

t

2

(
sin

t

4

)
, −π < t ≤ π.

The square of the distance from the point (1, 0) to the points on the function is given by

z(t) = (1− u(t))2 + (v(t))2.

It can be easily seen by calculating through mathematica software that

z′(t) =
1

2

−4 cos

(
t

4

)
−

√
2
(
3 + 4 cos

(
t
2

)
+ 4 cos(t)

)√
cos
(
t
2

)
 sin

(
t

4

)
Next, we will plot z′(t) to find the critical points.

Figure 5.4: f ′(z)
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After solving this in Mathematica, we find two critical points at t = 0 and t ≈ 2.97251.

At t = 0,
z′′(0) ≈ −2.44454 (≤ 0, point of maxima)

z(0) = (1 +
√
2)2 (maxima)

Hence, Ra = Max
√

z(t) ≈ 1 +
√
2.

At t ≈ 2.97251,

z′′(2.97251) ≈ 7.55781 (≥ 0, point of minima)

z(2.97251) ≈ 0.66587 (minima)

Thus, ra = min
√

z(t) ≈ 0.81601

Figure 5.5: a = 1

Theorem 5.2 Let a =
√
2
2
+ 1.Let ra and Ra be given by

ra = 1.36996

and

Ra = 1 +
1√
2
.

Then
{w ∈ C : |w − a| < ra} ⊆ ϕ(D) ⊆ {w ∈ C : |w − a| < Ra} .

Proof. For z = eit, the parametric equations of the function ϕ(z) = 1 + z +
√
1 + z are

u(t) = 1 + cos t+

√
2 cos

t

2

(
cos

t

4

)
, v(t) = sin t+

√
2 cos

t

2

(
sin

t

4

)
, −π < t ≤ π.
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The square of the distance from the point (
√
2
2

+ 1, 0) to the points on the function is
given by

z(t) =

(√
2

2
+ 1− u(t)

)2

+ (v(t))2.

It can be easily seen by calculating through mathematica software that

z′(t) =
1

2

−4 cos

(
t

4

)
−

√
2
(
3 + 4 cos

(
t
2

)
+ 4 cos(t)

)√
cos
(
t
2

)
 sin

(
t

4

)

After solving this in Mathematica, we find two critical points at t = 0 and t ≈
2.5212404.

At t = 0,
z′′(0) ≈ −0.6553301 (≤ 0, point of maxima)

z(0) =

(
1− 1√

2
+
√
2

)2

(maxima)

Hence, Ra = Max
√

z(t) ≈
(
1 + 1√

2

)
.

At t ≈ 2.5212404,

z′′(2.5212404) ≈ 1.5256894 (≥ 0, point of minima)

z(2.5212404) ≈ 1.87678668 (minima)

Thus, ra = min
√
z(t) ≈ 1.36996

Figure 5.7: a =
√
2
2
+ 1
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5.3 Conclusion

This chapter provided a detailed analysis of the function associated with right half of
Lemniscate domain ϕ(z) = 1 + z +

√
1 + z within the unit disk. We established that

this function possesses several important properties: univalence, a positive real part, a
starlike image symmetric about the real axis, and a positive derivative at the origin. These
properties were proven through a combination of analytical techniques and computational
verification using Mathematica. The determination of inner and outer circular bounds
for the image of the unit disk offers a quantitative description of the function’s mapping
behavior.
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